
A Declarative Approach to Multi-Layer Path
Finding Based on Semantic Network Descriptions

Li Xu∗, Freek Dijkstra†, Damien Marchal∗, Arie Taal∗, Paola Grosso∗, Cees de Laat∗
∗ System and Network Engineering Group

Universiteit van Amsterdam
Science Park 107, 1098 XG Amsterdam, The Netherlands
Email: {l.xu, d.marchal, a.taal, p.grosso, delaat}@uva.nl

† SARA Computing & Networking Services
Science Park 121, 1098 XG Amsterdam, The Netherlands

Email: freek.dijkstra@sara.nl

Abstract—With the increasing demand for dynamic network
connections between multiple research networks, a number of
issues on multi-layer hybrid networks need to be addressed, such
as network representation, path finding, and path provisioning.
This paper focuses on solving the multi-layer path finding
problem by a declarative approach. The declarative approach
uses Prolog and is compared to an imperative algorithm in
Python that was published earlier. We present semantic web
technologies to describe the multi-layer network and introduce
the complexity of the path finding problem with a typical multi-
layer network example.

I. INTRODUCTION

As worldwide distributed research collaboration the need
for deterministic network connectivity amongst institutions is
rising. The implementations typically make use of so-called
light paths [1]. Given that technologies evolve over time and
network administrators each make their own decision about
the technology to use, these interconnected networks will be
multi-technology in nature. Multi-technology networks can be
modelled as multi-layer networks where the configuration of
the network can be changed at multiple layers. Examples of
these networks include optical and hybrid networks where the
TDM (SDH/SONET), WDM, OTN, and Ethernet layers can
be dynamically reconfigured. The integration of the different
technologies in transport networks increases the complexity of
path finding.

The path finding problem in single layer networks is well
studied, while path finding in multi-layer networks, such as
multi-technology networks, is far from trivial. Technology
incompatibilities in networks lead to complex constraints in
path finding algorithms. The algorithms that are used in
single layer routing protocols, such as the Ford-Fulkerson
algorithm [2] for BGP and Dijkstra’s algorithm [3] for OSPF,
can not deal with the complexity of the multi-layer networks
and fail to find the shortest multi-layer path. In order to solve
this problem, both a multi-layer network model description
and new path finding algorithms need to be developed.

Some pilot researches have been carried out using the
imperative programming language Python [4], [5] . The major
limitations of these approaches are the high complexity of
implementation of the algorithm and the incompatibility of

the non-network resources (e.g. computing nodes). In this
paper, we compare two alternative solutions to the multi-layer
path finding problem, an imperative program in Python (as a
benchmark) and a declarative program in Prolog.

This paper is organized as follows. In the next section
we introduce the technology used to describe multi-layer
networks. We will then elaborate on the complexity in multi-
layer network path finding. In section IV, we will present our
implementations by using different approaches and show some
comparisons and discussions in section V. Finally we propose
the future work and draw our conclusions.

II. MULTI-LAYER NETWORK DESCRIPTION

The Network Description Language (NDL) is a RDF
ontology of optical hybrid networks [6]. It helps network
and service providers to efficiently describe their network
resources, and exchange this information among each other.
This information can be used for visualization and path finding
[7]. NDL is used in the community of national research and ed-
ucation networks for these applications. NDL provides several
schemata that can be used for this purpose: a topology schema
that describes the basic interconnections between devices, a
layer schema to describe technologies, and a capability schema
to describe network capabilities and a domain schema for
creating abstracted views of networks.

NDL is strongly based on the functional elements defined by
ITU-T recommendations G.805 and G.800 [8], [9]. In addition,
the G.805 and G.800 model is extended so NDL can not
only be used to describe the state of a network, but also its
capabilities – how the state can be changed, and by whom [10].

A unique selling point of NDL is that its base is completely
technology independent. This property has been used to create
a path finding implementation that does not need to be changed
as new technologies come along [4].

III. COMPLEXITY OF MULTI-LAYER PATH FINDING

A. Multi-Layer Path Finding

Multi-layer path finding is fundamentally different from
single layer path finding. A shortest path in a multi-layer
network may be looped (traverse the same link twice), and

A2

B1

B2

B4

B3

C3 C4

D4

D3

D2
E2

D1

1310

1550 1310

1550

WDM layer

A1

C1 C2

E1

Ethernet layer

Fig. 1. The example of multi-layer network.

a segment of a shortest path may not be a shortest path in
itself [4], [5].

Fig.1 shows a graphical representation of a sample multi-
layer network. This representation uses functional elements
and logic as defined in ITU-T recommendations G.805 and
G.800 [8], [9]. This network consists of five devices: A, B,
C, D and E. Each device is modelled as a switch matrix with
logical interfaces (Forwarding Points in G.800 terminology),
the circles in Fig.1. Devices B and D are wavelength selective
switches that can forward a wavelength of a specific color
to another wavelength. As these devices have pure WDM
technology interfaces, they are represented in the WDM-layer
only. Devices A, C, and E are Ethernet devices, with interfaces
operating at a fixed wavelength (either 1310 or 1550 nm).
For example, device C has two interfaces and can forward
Ethernet traffic between logical interfaces C1 and C2. The
Ethernet packets of these two interfaces are adapted into a
specific wavelength before those are forwarded to neighboring
devices. This is indicated by interface nodes in both layers with
an adaptation (edge with triangle symbol) between them. The
Ethernet data of logical interface C1 is adapted into C3 which
is a laser operating at 1550 nm, while the Ethernet data of C2
is adapted into C4, a laser operating at 1310 nm.

The wavelength selective switches B and D can not convert
between wavelengths; they forward the signal as-is. Two for-
warding end points at the WDM layer can only exchange data
if they operate at the same wavelength. A network connection
between A2 and E2 would result in a failure, while a network
connection between A2 and C4 would be feasible. Following
the logic in the G.805 and G.800 recommendations, a network
connection on the WDM layer, with adaptation at the source
and de-adaptation at the sink, would result in a link connection
at the Ethernet layer.

Our goal is to find the shortest feasible path from A1 to
E1. Since A2 and E2 have incompatible wavelengths, the
wavelength has to be converted at device C. The shortest path
is thus A1 −A2 −B1 −B3 −D3 −D2 −C4 −C2 −C1 −
C3 −B2 −B4 −D4 −D1 −E2 −E1 . An alternative shortest
path first traverses B4 − D4 before B3 − D3 . This solution

could also be found by a standard shortest-path algorithm if
edges and interface nodes for each wavelength are duplicated,
but this is not possible in the general case and does not scale
either [4].

B. Link constrained vs. Path constrained

The edges B3−D3 and B4−D4 represent link connections
at the WDM layer, thus individual wavelengths. It is not speci-
fied how these wavelengths are transported between devices B
and D. It could be two physical links to one physical link with
two wavelengths, using wavelength division multiplexing. If it
is the later option, the shortest path would traverse the same
physical link twice.

Multi-layer network connections are fundamentally different
from single layer network connections. Whereas constraints
in single layer networks apply to individual edges or nodes,
the constraints in multi-layer networks may depend on the
combination of multiple edges or nodes [4], [5]. For example,
the use of the interface A2 or the interface E2 are perfectly
valid, but the combination of the two in a network connection
is not.

IV. IMPLEMENTATIONS

A. Path Finding Approaches

In earlier work we have shown a technology-independent
multi-layer network model and the properties of a valid path
through such a network [10]. How to obtain a valid path given
a network, source and destination is another matter.

We have proposed a path finding algorithm based on a
breadth first search algorithm [5]. This is a hop-by-hop al-
gorithm: it starts with the source, and finds neighboring nodes
to which it can extend the path. It then repeats this process
starting with these neighboring nodes. Neighbors can be con-
nected using links, adaptations, de-adaptations or internal cross
connects inside devices. We will present an implementation of
this algorithm in the next section.

An alternative approach to the path finding is a layer-by-
layer algorithm. Rather than examining direct neighbors, it
examines all other nodes on the same layer, and checks which
of these nodes can reach each other. There are two variants of
the layer-by-layer approach: a bottom-up approach that starts
at the lowest layer and a top-down approach that starts at the
highest layer.

The bottom-up layer-by-layer approach uses a forward
chaining reasoning engine. It takes all possible network con-
nections on the lowest layer and deduce link connections at
a higher layer from these. In our example network in Fig.1,
the links at the WDM layer lead to valid network connections
between A2 and C4, and between C3 and E2. That corresponds
to valid link connections between A1 and C2 and between
C1 and E1 at the Ethernet layer. The disadvantage of this
approach is that it is untargeted: it will find all possible
connections, without looking for the specific request for a
network connection between a given source and destination.

The top-down layer-by-layer approach uses a backward
chaining reasoning engine. It starts with the source and

destination at the highest layer, and tries to find network
connections at lower layer that would result in the given
connections at a higher layer.

B. Imperative programming

Earlier we implemented and described a hop-by-hop path
finding algorithm in Python [4].

The Python implementation makes use of Python NDL
Tools (informally Pynt), a software library designed to read,
write and process NDL files. At the core is a large set of
Python objects representing computer networks and network
technologies. The whole Pynt module is rather complex. For
example, the switch matrix class can determine if a cross
connect is possible or not, based on generic properties such as
the ability to convert between labels or not (e.g. wavelength
conversion), unicast, multicast or broadcast support of devices,
and support for both unidirectional and bidirectional connec-
tions.

Fig.2 lists the number of classes and lines of code for key
modules in Pynt. This does not include the import and export
modules.

Module Description # Classes # Lines
pynt.xmlns Generic RDF

classes
4 classes 507 lines

pynt.elements Network
description

19 classes 1560 lines

pynt.layer Technology de-
scription

5 classes 308 lines

pynt.paths Path
descriptions

18 classes 289 lines

pynt.algorithm Path finding al-
gorithms (main
variant)

2 classes 381 lines

Fig. 2. Code size for key modules in Pynt.

C. Declarative Programming

Section II describes the NDL as a network representation in
RDF. The use of RDF permits the harvesting and manipulation
of network data, much like it is stored in a database. SPARQL
is a SQL-like query language to explore information in an
RDF database. For example, the query in Fig.3 searches in
the database for two devices d1 and d2 that are connected by
a path that consists of two links (an NDL connectedTo
statement) and a cross connect (an NDL switchedTo state-
ment).

If a query can be used to find a path of length 3, could
it be extended to find a path of any length? To achieve
this, it is necessary to employ a ‘query language’ that allows
recursive statements and is more expressive than SPARQL.
We choose to use Prolog. Prolog was introduced in the early
70’s; and unlike many other programming languages it is based
on a declarative syntax. In Prolog a program is expressed

PREFIX ndl: <http://www.science.uva.nl/research/sne/ndl#>
SELECT ?d1 ?d2
WHERE

{
?d1 ndl:hasInterface ?i1.
?i1 ndl:connectedTo ?i2.
?i2 ndl:switchedTo ?i3.
?i3 ndl:connectedTo ?i4.
?d2 ndl:hasInterface ?i4

}

Fig. 3. A SPARQL query can search for two devices d1, d2 that are connected
to the same switch.

in terms of logical relations (rules) between predicates1 and
the program execution is equivalent to search for the satis-
faction of these logical relations. Presently, there are several
Prolog implementations available. One of them, SWI-Prolog
[11], provides libraries for RDF management and semantic
manipulation. These libraries can load and manipulate an RDF
database stored in the triplet format: Subject - Predicate - Ob-
ject. Fig.4 defines rules to transform the NDL statements into
roughly equivalent Prolog predicates. The canswitchto()
rule has no equivalent NDL statement is introduced here for
simplicity. Whereas an switchedTo() predicate asserts that
a cross connect exists, a canswitchto() predicate asserts
that it is possible to create a cross connect. For readability
each rule is identified: R1, R2, R3, and so on.

R1: linkto(Intf1, Intf2):−
rdf db:rdf(Intf1, ndl:‘linkTo’, Intf2).

R2: adapts(Intf1, Intf2):−
rdf db:rdf(Intf1, ndllayer:‘adapts’, Intf2).

R3: isadaptedin(Intf1, Intf2):−
rdf db:rdf(Intf1, ndllayer:‘isAdaptedIn’, Intf2).

R4: switchmatrix(Device, Matrix):−
rdf db:rdf(Device, ndlcap:‘hasSwitchMatrix’, Matrix).

R5: canswitchto(X, Y):−
hasinterface(S, X),
switchmatrix(S),
hasinterface(S, Y),
X \= Y.

Fig. 4. Rules that map the NDL statements stored in the RDF database to
Prolog predicates.

Fig.5 indicates how the NDL predicates are used to imple-
ment a simple path finding program. The following logical
relationships are defined: X and Y are a neighbor if there is
a link (PR1), a switchmatrix (PR2) or an adaptation (PR3).
There is a path between X and Y if either X and Y are a
neighbor (PR4), or iX and Z are a neighbor and there is a path
between Z and Y (PR5). Note that the [Z | Path] construct
in Prolog is equivalent to a list with element Z appended to
list Path. This logic defines all possible paths that consist of

1A Prolog predicate is roughly equivalent with an RDF statement, and is
unrelated to an RDF predicate.

PR1: neighbor(X, Y):− linkto(X, Y).
PR2: neighbor(X, Y):− canswitchto(X, Y).
PR3: neighbor(X, Y):− adapts(X, Y); isadaptedin(Y, X) .

PR4: path (X, Y, Visited, [Y]):−
neighbor(X, Y),
not(member(Y, Visited)).

PR5: path (X, Y, Visited, [Z | NPath]):−
neighbor(X, Z),
not(member(Z, Visited)),
path (Z, Y, [Z|Visited], NPath).

PR6: path(X, Y, [X | Path]):−
path (X, Y, [X], Path).

Fig. 5. Simple path finding algorithm.

consecutive neighbors. PR4 is the base case, whereas PR5 is
the inductive step of the recursive definition.

Executing the path finding program consists in fact in prov-
ing that path(X, Y, Path) is true. To do so, the Prolog
virtual machine (the reasoning engine) proceeds by backward
chaining reasoning; starting from the query to prove that this is
a consequence of known facts stored in the database. Consider
the steps if Prolog is given the network of Fig.1 and asked
for a path between A1 and C1. The predicate path(a1,
c1, Path) is true if path_(a1, c1, [a1], Path)
is true. While, according to PR4, path_(a1, c1, [a1],
Path) is true if neighbor(a1, c1) is true. As this
is not the case a backtracking operation is carried out
to try the PR5 alternative instead of PR4: path_(a1,
c1, [a1], Path) is true if neighbor(a1, Z) is true,
neighbor(a1, Z) is true if linkto(a1, Z) is true,
linkto(a1, Z) is true if Z=a2 and so on. Similar to the
Python implementation, the way Prolog solves a path query
is by doing a hop-by-hop path finding, although this simple
variant does not take any path constraints into account.

This simple algorithm can be extended to support additional
constraints that arise in the multi-layer path finding. The multi-
layer path finding algorithm in Prolog, as shown in Fig.6, is
capable of that logic. The result of this algorithm is not a list
of nodes, but a list of cross connects that must be made in
order to create the requested path.

The algorithm closely follows the logic from the ITU-T
G.805 specification, as given at the end of section II:

lc: link connection, either direct linkto, or implied via adap-
tation and a network connection on a lower layer.

nc: network connection, sequence of one or more link con-
nections and/or subnetwork connections

snc: subnetwork connections: a cross connect, or can-
switchto() statement.

The definition of network connections is restricted to be either
a link connection, or a sequence of link connections, sub-
network connections and network connections. These logical
constrains that are also present in the NDL model, can be

nc(Src, Dst, Crss):− nc dfs(Src, Dst, Crss, , , [], [], []).

lc dfs(Src, Dst, [], [], [], , ,):− linkto(Src, Dst).

lc dfs(Src, Dst,
DownCrss, DownCrsSrcs, DownCrsDsts,
UpCrss, CrsSrcs, CrsDsts):−
adapts(Src, Hop1),
isadaptedin(Hop2, Dst),
label(Hop1, Label),
label(Hop2, Label),
Hop1 \= Hop2,
nc dfs(Hop1, Hop2,

DownCrss, DownCrsSrcs, DownCrsDsts,
UpCrss, CrsSrcs, CrsDsts).

nc dfs(Src, Dst,
DownCrss, DownCrsSrcs, DownCrsDsts,
UpCrss, CrsSrcs, CrsDsts):−
lc dfs(Src, Dst, DownCrss, DownCrsSrcs, DownCrsDsts,

UpCrss, CrsSrcs, CrsDsts).

nc dfs(Src, Dst, DownCrss, DownCrsSrcs, DownCrsDsts,
UpCrss, UpCrsSrcs, UpCrsDsts):−
lc dfs(Src, Hop1,

DownCrss1, DownCrsSrcs1, DownCrsDsts1,
UpCrss, UpCrsSrcs, UpCrsDsts),

Cross = canswitchto(Hop1, Hop2),
Cross,
append(UpCrss, DownCrss1, NewUpCrss),
append(UpCrsSrcs, DownCrsSrcs1, NewUpCrsSrcs),
append(UpCrsDsts, DownCrsDsts1, NewUpCrsDsts),
snc dfs(Cross, NewUpCrss, NewUpCrsSrcs,

NewUpCrsDsts),
nc dfs(Hop2, Dst,

DownCrss2, DownCrssSrcs2, DownCrssDsts2,
[Cross | NewUpCrss], [Hop1 | NewUpCrsSrcs],
[Hop2 | NewUpCrsDsts]),

append(DownCrss1, [Cross | DownCrss2], DownCrss),
append(DownCrsSrcs1, [Hop1 | DownCrssSrcs2],

DownCrsSrcs),
append(DownCrsDsts1, [Hop2 | DownCrssDsts2],

DownCrsDsts).

snc dfs(, [], [], []).

snc dfs(Cross, Crss, ,):− member(Cross, Crss).

snc dfs(Cross, Crss, Srcs, Dsts):−
Crss \= [],
not(member(Cross, Crss)),
Cross = canswitchto(Hop1, Hop2),
not(member(Hop1, Srcs)), not(member(Hop1, Dsts)),
not(member(Hop2, Dsts)), not(member(Hop2, Srcs)).

Fig. 6. The complete multi-layer path finding implementation in Prolog. lc
= link connection; nc = network connection; dfs = depth first search.

implemented naturally in Prolog. The only constraint that is
not trivial to implement is that a path cannot go twice through
the same interface. This is handled by keeping a list of cross
connects, and making sure that the list of valid cross connects
does not cause conflicts (e.g. an interface can not be used in
two different cross connects). Much of the complexity of the
definitions in Fig.6 are caused by the requirement to both track
and backtrack the list of cross connects: the tracking (called
upstream) to make sure the depth first search has no infinite
loops, and backtracking (called downstream) to present the list
of used cross connects as the result of the algorithm.

During the execution of the Prolog query, the reasoning
proceeds layer-by-layer. The Prolog rules are defined in such
an order that a path is first examined at the given layer, and
only if no path is available at this layer, a path is examined at
the underlying layer. During this process, the consistency of
the wavelength at transmit and receive is ensured. For path
finding within the same layer, it uses a depth first search
algorithm, starting at the source. The result of the presented
algorithm is a list of the cross connects that must be made in
order to create the network connection. The same algorithm
is also capable to deal with the following queries:

Q1: nc(’A1’, ’E1’, Path).
Q2: nc(’A1’, X, Path).
Q3: nc(X, Y, Path).

Q1 corresponds to the query: “Is there a path between A1
and E1?”, Q2 corresponds to the query: “What are the paths
starting at A1?”, whereas Q3 corresponds to “What are all
available network connections?”

V. DISCUSSION

Finding a path in a multi-layer network is an NP-Complete
problem [5], and all solutions we presented are exact.

The Prolog and Python implementations are equivalent as
they are both Turing Complete, so we need other metrics to
compare the difference. In [12], [13], the lines of code is a
metric for implementation easiness. If we compare our two
implementations, it is clear that an equivalent implementation
using an imperative language like Python would require addi-
tional definitions of data-structures. More important is to note
that the complete multi-layer path finding query in Prolog
needs only 8 predicates and 56 lines of code whereas the
multi-layer path finding in Python is roughly 3045 lines of
code, including 48 classes. The comparison is a bit skewed,
since the Python code has much more functionality, but even
with that removed, the difference remains significant.

An interesting example of the advantage of declarative
programming is that in Prolog all the parameters can be free
variables and thus, with the same code, it is possible to issue
multiple queries as we see in Fig.7. Doing the same thing
in Python would require a large amount of additional code
to handle all the different variants. For example, there is a
query in which we request multiple paths that start on the
same device forming a star-shape structure. Such kind of query
is demanded to multi-cast a video stream for instance. The

PQ1: path(’A1’, ’E1’, Path).
PQ2: path(’A1’, Dst, Path).
PQ3: path(Src, ’E1’, Path).
PQ4: path(Src, Dst, Path).

Fig. 7. Four differents query that can asked

simplest way to fulfill it in Prolog is to add an additional
constraint to ensure that the found paths are not sharing the
same resources.

PQ6: path(Src, DstA, P1), path(Src, DstB, P2), disjoint([P1, P2]).

Fig. 8. Are there two different paths with the same source and two different
destination?

The closest Python implementation is much more complex.

for Src in interfaces:
consume(Src)
for DstA in interfaces:

path(Src, DstA, P1)
consume(P1) # the resource of P1 are used
for DstB in interfaces:

path(Src, DstB)
release(P1)

Fig. 9. The Python code that is equivalent to the Prolog code in Fig.7.

The examples above show the fundamental difference be-
tween Prolog and Python. In Python each request from a
user leads to a new algorithm that has to be specifically
implemented while Prolog is more flexible on this aspect. The
fundamental ambition of constraint Logic Programming is to
separate modeling from algorithms as stated by Kowalski [14]
with this pseudo equation:

Solution = Logic + Control

Where Logic is the declarative definition of the model and
Control says how to find a solution. This is a strong advantage
because most of the network constraints are represented in
NDL naturally and thus map naturally to the logical structure
of the language. In an imperative programming language
the two aspects are fully interleaved. It is also important to
understand that increasing the size of the queries (more free
variables) leads to an explosion of the size of the search
space. In order to cope with this search space explosion, a
specific algorithm may be needed in both Python and Prolog.
For example, the Prolog algorithm in Fig.6 does require
additional variables for both tracking and backtracking the
list of cross connects. In order to force a breadth first search
algorithm instead of a depth first search algorithm would
require additional tuning. Nevertheless the authors of [15] add
the following pseudo-equation:

Control = Reasoning + Strategy

to emphasis the key difference between the reasoning em-
ployed to reduce the search space and the strategies or
heuristics that helps in exploring the potentially interesting
solution first. Within such conceptual framework it becomes
much easier to understand where the complexity comes from
as well as where are the degrees of freedom to optimize a
specific constraint satisfaction problem as the multi-layer path
finding.

VI. FUTURE WORK

We plan to further investigate how the Prolog variants can
help to solve the multi-layer path finding problem. There are
two possible candidates: ECLiPSe [15] and FLORA-2 [16].
ECLiPSe integrates in the core of the language advanced
constraint propagation techniques. Such techniques can prune
the search space earlier than Prolog by detecting what explo-
ration is useless as it will lead to an easy detectable conflict
between constraints. ECLiPSe also supports, in a similar
manner, the language construct for strategies and heuristics.
Using ECLiPSe we desire to implement the multiple variants
of the multi-layer path finding algorithm and compare their re-
spective efficiency while dealing with representative networks.
FLORA-2 proposes a support for object-oriented reasoning
as well as the tabling extension, an interesting feature that
prevents infinite recursion which may appear in Prolog.

A major problem in this area is that a segment of a shortest
path may not be a shortest path in itself. This means that it is
not possible to solve the multi-domain scenario locally, and it
conflicts with the desire to minimize the amount of information
exchange cross domains.

VII. CONCLUSION

In this paper we proposed a solution for the multi-layer
path finding problem using the semantic network descriptions
and a logical reasoning system (Prolog). The logical system
permits to implement complex network problem in a very
concise manner. It also permits to fully take profit of the
semantic information that is encoded with the NDL model.
While our work is still in an early state, we believe that
declarative constraint logic programming is of great help not
only for multi-layer path finding but also for problems like co-
allocation of multiple resources in the context of Grids. The
use of a declarative language serving as the glue to describe all
these important questions in an unified framework as multiple
pieces of the same Jigsaw puzzle.

REFERENCES

[1] T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, and B. St.Arnaud,
“Translight: a global-scale lambdagrid for e-science,” Communications
of the ACM, vol. 46, no. 11, pp. 34–41, November 2003. [Online].
Available: http://doi.acm.org/10.1145/948383.948407

[2] L. R. Ford and D. Fulkerson, Flows in Networks. Princeton University
Press, 1962.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[4] F. Dijkstra, J. van der Ham, P. Grosso, and C. de Laat, “A path finding
implementation for multi-layer networks,” Future Generation Computer
Systems, vol. 25, no. 2, pp. 142–146, February 2009. [Online]. Available:
http://staff.science.uva.nl/ fdijkstr/publications/ndl-pathfinding.pdf

[5] F. Kuipers and F. Dijkstra, “Path selection in multi-
layer networks,” Computer Communications, 2008. [Online].
Available: http://staff.science.uva.nl/ fdijkstr/publications/multilayer-
pathselection.pdf

[6] J. J. van der Ham, F. Dijkstra, F. Travostino, H. M. Andree, and
C. T. de Laat, “Using RDF to describe networks,” Future Generation
Computer Systems, vol. 22, no. 8, pp. 862–867, October 2006. [Online].
Available: http://dx.doi.org/10.1016/j.future.2006.03.022

[7] J. van der Ham, F. Dijkstra, P. Grosso, R. van der Pol, A. Toonk,
and C. de Laat, “A distributed topology information system for optical
networks based on the semantic web,” Journal of Optical Switching
and Networking, vol. 5, no. 2-3, pp. 85–93, June 2008. [Online].
Available: http://staff.science.uva.nl/ vdham/research/publications/0703-
ApplicationsOfNDL.pdf

[8] “ITU-T Recommendation G.805: Generic functional architecture of
transport networks,” International Telecommunication Union, Tech.
Rep., March 2000. [Online]. Available: http://www.itu.int/rec/T-REC-
G.805/en

[9] “Unified functional architecture of transport networks,” International
Telecommunication Union (ITU), Recommendation ITU-T G.800,
September 2007. [Online]. Available: http://www.itu.int/rec/T-REC-
G.800/

[10] F. Dijkstra, B. Andree, K. Koymans, J. van der Ham, P. Grosso, and
C. de Laat, “A multi-layer network model based on ITU-T G.805,”
Computer Networks, vol. 52, no. 10, pp. 1927–1937, July 2008.

[11] J. Wielemaker, “An overview of the SWI-Prolog programming en-
vironment,” in Proceedings of the 13th International Workshop on
Logic Programming Environments, F. Mesnard and A. Serebenik, Eds.
Heverlee, Belgium: Katholieke Universiteit Leuven, december 2003, pp.
1–16, cW 371.

[12] J. Wielemaker, G. Schreiber, and B. Wielinga, “Prolog-based infras-
tructure for RDF: performance and scalability,” in The Semantic Web
- Proceedings ISWC’03, Sanibel Island, Florida, D. Fensel, K. Sycara,
and J. Mylopoulos, Eds. Berlin, Germany: Springer Verlag, october
2003, pp. 644–658, lNCS 2870.

[13] B. T. Loo, T. Condie, M. Garofalakis, D. A. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
networking: Language, execution and optimization,” in Proceeding of
ACM-SIGMOD International Conference on Management of Data, 2006.

[14] R. Kowalski, “Algorithm = logic + control,” Commun. ACM, vol. 22,
no. 7, pp. 424–436, 1979.

[15] A. M. Cheadle, W. Harvey, A. J. Sadler, J. Schimpf, K. Shen, and M. G.
Wallace, “Eclipse: A tutorial introduction,” Imperial College London,
Tech. Rep. IC-Parc-03-1, 2003-2008.

[16] G. Yang, M. Kifer, H. Wan, and C. Zhao, Flora-2 : User’s Manual,
2008.

