

Innovating the Network for Data-Intensive Science -INDIS, November 18, 2024

Luanda

Fortaleza

Leveraging In-band Network Telemetry for Automated DDoS Detection in Production Programmable Networks: The AmLight Use Case

sus Photo

New York

Los Angele

Hadi Sahin, Jeronimo Bezerra, Italo Brito, Renata Frez, Vasilka Chergarova, Luis Fernandez Lopez, Julio Ibarra

Santiago

Panama

Hadi Sahin, PhD Research Scientist

Motivation

- ▪In-band Network Telemetry (INT) has been available since 2015, providing rich network state information.
- **We have been using INT in Amlight since 2018**
- ▪Research and practical deployments of INT for Distributed Denial of Service (DDoS) threat detection remain limited:
	- **Existing studies primarily rely on data generated from simulation environments (e.g.,** Mininet)
	- **IF In the industry, sFlow and NetFlow are generally used for traffic monitoring.**
	- **There is a lack of analysis comparing the performance of INT-based approaches to** traditional monitoring tools, such as sFlow.

In this work, we leverage In-band Network Telemetry (INT) technology implemented in the AmLight network to detect Distributed Denial of Service (DDoS) attacks:

- **Utilize real-world production INT data to detect DDoS attacks.**
- ▪Compare DDoS attack detection using INT-based analysis with traditional sFlowbased monitoring.
- **Propose an automated, machine learning-driven approach for DDoS attack** detection.

Background Information INT and sFlow tools

- **INT technology combines data packet** forwarding with network measurement.
- **If embeds telemetry information into** packets as they traverse the network.
- **E**sFlow captures and samples packets across network devices (1/4096).

Automated DDoS Detection

Proposed Mechanism

- Gather INT data.
- Send INT data to the Data processor:
	- Flow ID: src/dst IP, src/dst ports, protocol.
	- Create flow-level features (e.g., Packets per second, Flows per second).
- Save processed data to the database.
- Retrieve processed data from database
- 5. Send data to the prediction model.
- 6. Receive predictions.
- Send predictions to the Data processor for ensemble voting.
- 8. Save final prediction score to the database.

Machine Learning Models

We use machine learning (ML) models to classify benign versus normal flows (binary classification). The following models are used:

- **Random Forest (RF)**
- **EX-Nearest Neighbors (KNN)**
- **Gaussian Naive Bayes (GNB)**
- **EXECT** Network (NN) with three hidden layers of 32, 16, and 8 neurons.

Used Metrics

- **EXECURERE:** Proportion of correctly classified instances among all instances. (TP+TN)/(TP+TN+FP+FN)
- **Recall (R): Proportion of actual positives correctly identified. TP/TP+FN**
- **Precision (p): Accuracy of positive predictions. TP/TP+FP**
- **F1: Harmonic mean of Precision and Recall. 2P*R/(P+R)**

Note: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)

Data Source

- **-Data were collected from a subnet of** the AmLight network from June 6 to June 11, 2024
	- **Benign flows were collected for all days.**
	- **Example 2 Simulated attack flows were generated** on June 10^{th} and 11^{th} (~60M packets per day, ~700 per second)
	- **Example 1 Attack types include SYN Flood, SYN** scan, UDP scan, and SlowLoris

Feature Selection

- **Example 1 Features from INT data differ from those of** sFlow in *Queue occupancy* and *Hop latency*
- *For (*) we include cumulative, average, and standard deviation of the variables.*
	- *Cumulative IAT => flow duration*
	- *Flow rate = Total packet size/flow duration*
	- *Packet rate = Total # of packets/ flow duration*

Experimental Results I

- We use data flows from June 11, 2024, as the test set to evaluate the models.
	- **This includes both benign and attack** flows.
	- **If also contains SYN Flood (seen) and** SlowLoris (unseen attacks) attacks.
- **For the RF and KNN models INT and** sFlow data show comparable performance.

Experimental Results I

A closer Look at the Predicted Flows

- Vertical lines: attack episodes
	- SYN Flood, SYN Flood, SYN Flood, SlowLoris, SlowLoris, respectively
- Colors indicate:
	- **Gray: INT True Values**
	- **Green: INT Predictions**
	- **Purple: sFlow True Values**
	- **Pink: sFlow Predictions**
- Y-axis: Predictions
	- O: Benign flows
	- 1 : Attack Flows

sFlow may not capture all attack flows due to sampling.

As a result, predictions based on sFlow data might miss certain threat episodes.

Experimental Results II The INT Testbed

- *tcpreplay -i* 〈*interface*〉 *-p* 〈*number of packets*〉 〈*pcap file path*〉
	- ▪*Benign flows 3 packet/s*
	- ▪*Attack flows up to 100 packet/s*
- ▪*Flows go from the source to target*
	- *Switches 3 and 4 act as source and sink.*
	- **INT** metadata is removed from the packet load at switch 4.
	- ▪*INT data is gathered from 5.*

Experimental Results II

- **E** We achieved over 97% accuracy in predicting all attack types, with an average response time of under 2 seconds
- **The accuracy for benign flow is slightly** lower
- **The average prediction time is also longer**
	- **This is due to bottlenecks in registering** new flows, updating, and I/O operations.

Conclusion

- **INT data proved effective in detecting DDoS attacks for both known and unknown** attack patterns, with an F1 score consistently above 99% across all models.
- **EXTER 15 In 19 and 10 Ferror Proget 1 SE 10 Ferrorm 11 Ferrorm 2016 EXTE 10 Ferrorm 2016** The SFI of SFI set 10 And 10 Ferrorm well for GNB and NN models. sFlow may miss data due to sampling, which results in missing some attack flows.
- **E** Automated detection, addressing bottlenecks, can be achieved in under 2 seconds.
- **Efficiently storing, processing, and analyzing INT data requires substantial** computational resources and optimized techniques.

Future Work

- We want to implement automated DDoS detection on part of our production network, with some form of mitigation capabilities.
	- To do this, we need to handle production volume and speed (at least 2.5 million packets per second across 50,000 to 70,000 unique flow IDs).
	- **E** Currently, we use C/C++ code for parsing and processing, and Kafka for storing and streaming data.
	- **Our goal is to scale this solution and deploy it across the entire production network.**
- **At AmLight, we want to continue utilizing INT data to address network issues that benefit** from fine-grained data, such as jitter, packet loss, microbursts, congestion, and detailed traffic analysis.

Additional Slides

17 Supercomputing Conference 2024, Atlanta GA

We used *hping3* to simulate SYN and UDP scans, as well as SYN Flood attacks, and a Python script to run SlowLoris attacks.

- **TCP SYN scan against the host <host name>, all ports aggressive scan**
- UDP Scan against the host *<host name>*, common ports
- TCP SYN Flood against the host <host name>, port *<port name>* around 5000ps
- SlowLoris against the host *<host name>*, port *<port name>*

Experimental Results I

sFlow Predictions

Accuracy: 0.9937 Confusion Matrix: $[$ 16587 $\boldsymbol{\theta}$]

 011 106 Recall: 0.0000 Precision: 0.0000 F1-score: 0.0000 auc: 0.5000

Prediction Time: 0.2350 seconds

Prediction Time: 0.0083 seconds

Neural Network • Gaussian Naïve Bayes

Experimental Results I Confusion Matrix

Experimental Results I

Top Five Most Important Features

- **The most important features for** detecting DDoS attacks are *Inter-Arrival Time, Packet Size, Queue Occupancy, and Protocol*.
- **E** Variants of these features, such as individual values, cumulative statistics, averages, and standard deviations, and their ranking differ in importance across ML models.

Feature Permutation

- **The table shows the ranked feature** importance for the RF model.
- **Permutation importance:**
	- **For each feature, the library shuffles its values** across all samples while keeping other features unchanged.
	- **If then observes how the outcome changes.**

The INT Testbed

Hardware Configurations Overview

The source and target servers powered by dual AMD EPYC 7451 24-core processors and 128GB of RAM. Each server utilizes a Mellanox ConnectX-5 network card capable of 100Gbps throughput.

The switch is an Edgecore Wedge DCS800

Experimental Results II

A Closer Look at Predictions

• Misclassifications occur in the initial instances of a new flow.

