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Motivation

▪In-band Network Telemetry (INT) has been available since 2015, providing rich 

network state information.

▪We have been using INT in Amlight since 2018

▪Research and practical deployments of INT for Distributed Denial of Service (DDoS) 

threat detection remain limited: 

▪Existing studies primarily rely on data generated from simulation environments (e.g., 

Mininet)

▪ In the industry, sFlow and NetFlow are generally used for traffic monitoring.

▪There is a lack of analysis comparing the performance of INT-based approaches to 

traditional monitoring tools, such as sFlow.
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Key Contributions of This Paper

In this work, we leverage In-band Network Telemetry (INT) technology implemented 

in the AmLight network to detect Distributed Denial of Service (DDoS) attacks:

▪Utilize real-world production INT data to detect DDoS attacks.

▪Compare DDoS attack detection using INT-based analysis with traditional sFlow-

based monitoring.

▪Propose an automated, machine learning-driven approach for DDoS attack 

detection.
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Background Information
INT and sFlow tools

▪INT technology combines data packet 

forwarding with network 

measurement.

▪It embeds telemetry information into 

packets as they traverse the network.

▪sFlow captures and samples packets 

across network devices (1/4096). 
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Automated DDoS Detection 
Proposed Mechanism

1. Gather INT data.

2. Send INT data to the Data processor:

• Flow ID: src/dst IP, src/dst ports, protocol.

• Create flow-level features (e.g., Packets per 
second, Flows per second).

3. Save processed data to the database.

4. Retrieve processed data from database

5. Send data to the prediction model.

6. Receive predictions.

7. Send predictions to the Data processor for 
ensemble voting.

8. Save final prediction score to the database.
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Evaluation Setup
Machine Learning Models

We use machine learning (ML) models to classify benign versus normal flows (binary 

classification). The following models are used:

▪Random Forest (RF)

▪K-Nearest Neighbors (KNN)

▪Gaussian Naive Bayes (GNB)

▪Neural Network (NN) with three hidden layers of 32, 16, and 8 neurons.
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Evaluation Setup
Used Metrics

▪Accuracy: Proportion of correctly classified instances among all instances. 
(TP+TN)/(TP+TN+FP+FN)

▪Recall (R): Proportion of actual positives correctly identified. TP/TP+FN

▪Precision (p): Accuracy of positive predictions. TP/TP+FP

▪F1: Harmonic mean of Precision and Recall. 2P*R/(P+R)

Note: True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN)
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▪Data were collected from a subnet of 

the AmLight network from June 6 to 

June 11, 2024

▪Benign flows were collected for all days.

▪Simulated attack flows were generated 

on June 10th and 11th (~60M packets per 

day, ~700 per second)

▪Attack types include SYN Flood, SYN 

scan, UDP scan, and SlowLoris 
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Evaluation Setup
Feature Selection

▪ Features from INT data differ from those of 
sFlow in Queue occupancy and Hop latency

▪ For (*) we include cumulative, average, and 
standard deviation of the variables.

▪ Cumulative IAT => flow duration

▪ Flow rate = Total packet size/flow duration

▪ Packet rate = Total # of packets/ flow duration



10

Experimental Results I

▪We use data flows from June 11, 2024, 

as the test set to evaluate the models.

▪This includes both benign and attack 

flows.

▪ It also contains SYN Flood (seen) and 

SlowLoris (unseen attacks) attacks.

▪For the RF and KNN models INT and 

sFlow data show comparable 

performance. 
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Experimental Results I
A closer Look at the Predicted Flows

▪ Vertical lines: attack episodes

▪ SYN Flood, SYN Flood, SYN Flood, SlowLoris, SlowLoris, 
respectively 

▪ Colors indicate:

▪ Gray: INT True Values

▪ Green: INT Predictions

▪ Purple: sFlow True Values

▪ Pink: sFlow Predictions 

▪ Y-axis: Predictions

▪ O: Benign flows

▪ 1 : Attack Flows
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sampling.

▪As a result, predictions based on sFlow data 

might miss certain threat episodes.
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▪ tcpreplay -i 〈interface〉 -p 〈number of 
packets〉 〈pcap file path〉

▪Benign flows 3 packet/s

▪Attack flows up to 100 packet/s 

▪Flows go from the source to target

▪Switches 3 and 4 act as source and sink.

▪ INT metadata is removed from the 
packet load at switch 4.

▪ INT data is gathered from 5.
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Experimental Results II

▪We achieved over 97% accuracy in 

predicting all attack types, with an 

average response time of under 2 seconds

▪The accuracy for benign flow is slightly 

lower

▪The average prediction time is also longer 

▪This is due to bottlenecks in registering 

new flows, updating,  and I/O operations.
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Conclusion

▪INT data proved effective in detecting DDoS attacks for both known and unknown 

attack patterns, with an F1 score consistently above 99% across all models.

▪sFlow performed similarly to INT for RF and KNN models but did not perform well 

for GNB and NN models. sFlow may miss data due to sampling, which results in 

missing some attack flows.

▪Automated detection, addressing bottlenecks, can be achieved in under 2 seconds.

▪Efficiently storing, processing, and analyzing INT data requires substantial 

computational resources and optimized techniques.
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Future Work

▪We want to implement automated DDoS detection on part of our production network, with 
some form of mitigation capabilities.

▪To do this, we need to handle production volume and speed (at least 2.5 million packets per 
second across 50,000 to 70,000 unique flow IDs).

▪Currently, we use C/C++ code for parsing and processing, and Kafka for storing and streaming 
data.

▪Our goal is to scale this solution and deploy it across the entire production network.

▪At AmLight, we want to continue utilizing INT data to address network issues that benefit 
from fine-grained data, such as jitter, packet loss, microbursts, congestion, and detailed 
traffic analysis.
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Additional Slides
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Simulating Attack Flows

We used hping3 to simulate SYN and UDP scans, as well as SYN Flood attacks, and 

a Python script to run SlowLoris attacks.

▪TCP SYN scan against the host <host name>, all ports aggressive scan

▪ UDP Scan against the host <host name>, common ports 

▪ TCP SYN Flood against the host <host name>,  port <port name> around 5000ps 

▪ SlowLoris against the host <host name>,  port <port name>
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• Neural Network • Gaussian Naïve Bayes

Experimental Results I
sFlow Predictions
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Experimental Results I
Confusion Matrix
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▪The most important features for 

detecting DDoS attacks are Inter-

Arrival Time, Packet Size, Queue 

Occupancy, and Protocol.

▪ Variants of these features, such as 

individual values, cumulative statistics, 

averages, and standard deviations, and 

their ranking differ in importance 

across ML models.
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Feature Permutation

▪The table shows the ranked feature 

importance for the RF model.

▪Permutation importance:

▪For each feature, the library shuffles its values 

across all samples while keeping other features 

unchanged.

▪ It then observes how the outcome changes.
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▪The source and target servers powered by dual AMD EPYC 7451 24-core processors 

and 128GB of RAM. Each server utilizes a Mellanox ConnectX-5 network card 

capable of 100Gbps throughput.

▪The switch is an Edgecore Wedge DCS800
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Experimental Results II
A Closer Look at Predictions

• Misclassifications occur in the initial instances of a new flow.
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