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Abstract

Data sharing has become increasingly important in modern business and research. The ability to access
larger datasets can significantly improve the performance of machine learning models, while in fields
like medical science, the availability of more patient data holds immense potential. Consequently, many
initiatives are being developed worldwide to facilitate open data exchange in a secure distributed data-
sharing marketplace. Within this context, each party maintains control over their data and can implement
access through legal contracts, in the form of programmable policy. One part of this policy will express
where the data exchange takes place, and who has access to the data.

Research on this topic has pinpointed common data-sharing patterns, known as archetypes, and
has provided suggested architectures to create these data-sharing platforms. The choice of an optimal
archetype or architecture, however, may change over time, as policy evolves or the runtime environment
receives more requests, increasing the load on the system.

In this research, we address these dynamic requirements, by investigating if can capture these data-
sharing patterns and use these to automatically configure and deploy a set of lightweight data-exchange
microservices that together act according to a policy agreement. The creation of data-exchange mi-
croservices, allows new functionalities to be quickly introduced without changes to the core system.
Furthermore, the flexibility and scalability of the microservices allows optimization of energy and re-
source consumption.

This thesis introduces DYNAMOS: ‘Dynamically Adaptive Microservice-based Operating System’.
Inspired by the way traditional Operating Systems abstract the complexities of computer architectures
into standardized core functions, this research focuses on abstracting different data exchange patterns
into a unified set of core data exchange microservices that adhere to agreed-upon data exchange policies.
DYNAMOS simulates a distributed data-sharing platform and recreates a real-life data-sharing use case,
called the ‘Research Data Exchange’ that focuses on enabling data exchange between universities for
research purposes.

The current implementation shows how architectures, microservices, and data-sharing patterns can
be selected dynamically per request. The communication and transmission of data between microservices
are seamlessly abstracted, allowing them to focus on their primary functions. For this thesis, we delve into
the design decisions made when developing DYNAMOS, the disadvantages, and advantages of different
microservice architectures, and this approach to tackling data-exchange problems.

A known pitfall of microservice architectures is an increased latency due to the additional data
transfers from microservice to microservice. This is alleviated partly by a custom generic data transfer
method using gRPC. Further methods of decreasing latency are discussed, these methods however will
result in tighter coupling of the system components, which reduces flexibility.

This flexibility is a key component of DYNAMOS. We can’t foresee and judge exact requirements
on the trade-offs of security, architectures, latency, and evolving policy. Thus DYNAMOS is designed
to be self-adaptive, utilizing extendable algorithms to choose among architectural or archetype patterns,
influenced by policy, user input, or system events.
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Chapter 1

Introduction

Data sharing has become increasingly important in modern business. The ability to access larger datasets
can significantly improve the performance of machine learning models, while in fields like medical science,
the availability of more patient data holds immense potential. However, for data sharing to be successful,
it must align with the desired level of privacy and security of each participating party [1].

To create a platform for this, various initiatives around the world work on establishing a Digital
Data-sharing Marketplaces (DDM)[2]. One such initiative is the Amsterdam Data Exchange Fieldlab
(AMDEX) project [2], which aims to develop a DDM prototype that enables participating organizations
to maintain control over their data and enforce access and control through policies. One part of this
policy will express where the data exchange takes place, and who has access to the data.

An important concept within DDMs is a set of common data-sharing patterns, known as archetypes
[1, 3]. These archetypes determine which party provides data, which party does computations on this
data, and where the results of that data-sharing exchange go as agreed upon in the policies.

This thesis introduces DYNAMOS: ‘Dynamically Adaptive Microservice-based OS’. Inspired by the
way traditional Operating Systems abstract the complexities of computer architectures into standardized
core functions, this research focuses on abstracting different data exchange patterns into a unified set of
core data exchange microservices that adhere to agreed-upon data exchange policies. ‘Decentralized’ in
DDM is actually an important keyword here, which makes DYNAMOS a distributed OS.

In this thesis, we introduce the generic term ‘microservice chains’ to describe various microservice
patterns. A chain is a directed acyclic graph (DAG) of microservices that form a valid data exchange
scenario that adheres to policy agreements. These chains need to be executed, for this, we use the
generic term ‘jobs’. A user request flows through this chain job deployed to the parties set out by the
agreements.

Through this approach, we aim to achieve the following advantages. Firstly, we strive to establish
a self-adaptable system capable of seamlessly incorporating changes in agreements without the need for
developer intervention. Secondly, by introducing lightweight data exchange microservices, we eliminate
the necessity to redeploy the core system, resulting in a more agile and efficient environment. Lastly, the
‘operating system’ will allow for optimizing extra-functional properties, enabling cost and energy savings
based on the system’s environment.

1.1 Problem statement

To create a system like we described in the previous paragraph a list of problems needs to be solved.
First, we need a system or language to link microservices to both an archetype and a type of data-sharing
request.

Secondly, we need adaptability. Per user, or per request of the same user, different architectures or
data-exchange patterns (archetypes) could be selected to run. This requires the routing of data and
requests to be highly dynamic. This behavior should be able to adapt based on evolving agreements,
user-input or extra-functional properties.

A common approach to achieve self-adaptability is the use of a MAPE-K control loop, which stands
for (M)onitor, (A)nalyze, (P)lan, (E)xecute, over a shared (K)nowledge base [4]. Part of this thesis
is finding out what information (Knowledge) DYNAMOS needs to generate microservice chains and
optimize for extra-functional properties, like energy and costs, and how this can be practically used for
implementing self-adaptability.
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Finally, whatever architectures or archetypes are selected, should be invisible to the user. In other
words, where data requests are computed or sent does not change the result or interface from a user’s
perspective. For legal and research purposes, these decisions must be logged, which, however, is not
further covered in this thesis.

1.1.1 Research questions

Building this dynamic system will require choices in technology and design, each with trade-offs and
advantages. Thus we derived the following research questions, focusing on what knowledge is required
to make a system adaptable and what the consequences of choices in the design are.

RQ1 What are the advantages and disadvantages of different approaches to automatically re-compose a
running microservices architecture in a distributed system?

RQ2 What attributes/properties should a knowledge base contain to compose microservices in a DDM
environment?

RQ3 What extra attributes/properties should a ‘knowledge-base’ contain to make decisions on extra-
functional properties, like energy consumption and performance?

1.1.2 Research method

DYNAMOS is developed using action research [5]. The main focus is implementing the ‘Universities
of the Netherlands’ (UNL) use-case from the AMDEX project. In the UNL case, a data analyst performs
analyses on wage information of different universities across the Netherlands.

The results of this research will be an analysis of the choices made in developing DYNAMOS. The
choices made in technology, and the methods of supporting DYNAMOS'’s core functionality, e.g. creating
microservice chains, jobs, implementing self-adaptability, and dynamic routing.

The literature study is focused on the existing architecture proposals for DDM and methods for
attaining self-adaptability.

Finally, a set of quantitative experiments will be performed on DYNAMOS to establish a performance
baseline. In these experiments, we look at how DYNAMOS handles data transferring and identify
bottlenecks of the implementation.

1.2 Contributions

Our research makes the following contributions:

1.2.1 Core research contributions

CR1 Combining data-sharing requests and DDM archetypes into microservice chains

CR2 Specific microservice requirements for generic microservices to perform the AMDEX UNL use case
scenarios

CR3 Analysis of how baseline extra-functional properties (costs, energy, etc.) can be taken into account
in the system.

CR4 Analysis of different approaches to developing a distributed system for data-sharing purposes

CR5 Architecture to bridge the gap from a formal policy evaluation result, to a web environment where
jobs are executed.

1.2.2 Core technical contributions

CT1 Generic method to create single-use, self-cleaning microservice jobs

CT2 Generic communication method of transferring data through microservice chains

CT3 Exact types, code, and templates to generate microservice chains

CT4 Loosely messaging solution, with exact message definitions for communication in DYNAMOS

CT5 An open-source system that allows experimentation with microservice chains in a distributed en-
vironment
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1.3 Outline

In Chapter 2 we describe the background of this thesis. Chapter 3 describes the conceptual design of
DYNAMOS, and Chapter 4 shows the technical implementation. Chapter 5 describes two quantitative
experiments and chapter 6 shows the result. chapter 7 discusses the results, research question, and
threats to the validity of the thesis. Chapter 8, contains the work related to this thesis. Finally, we
present our concluding remarks in Chapter 9 together with future work.



Chapter 2

Background

This chapter provides the necessary background information for this thesis. First, we list the properties
of an OS and of a distributed OS. Subsequently, the AMDEX Fieldlab proposition, the UNL use-care,
and related data-sharing terminology are introduced. Finally, best practices in the context of distributed
systems, microservices, and microservice orchestration are described.

2.1 Operating systems

An operating system is software that manages a computer’s hardware, provides a basis for application
programs, and acts as an intermediary between the computer user and the computer hardware in a wide
variety of computing environments. We can also view a computer system as consisting of hardware,
software, and data. The operating system provides the means for the proper use of these resources in the
operation of the computer system. It performs no useful function by itself but provides an environment
within which other programs can do useful work. As described by Silberschatz et al., 2018]6].

In other words, the OS abstracts away the complexities of the system to allow the users to program
or use applications that do something useful. An OS contains the following key attributes et al., 2018[6]:

e Process Management
Memory Management
File system Management
Device Management
User Interface

Security

Networking

Error Handling
Multi-programming
Logging

2.1.1 Distributed Operating systems

“A distributed system is a collection of processors that do not share memory or a clock. Instead, each
processor has its own local memory, and the processors communicate with one another through various
communication lines, such as high-speed buses and the Internet.” [6]

In a distributed operating system the properties of a ‘regular’ OS, listed above are inherited. An
extra set of properties attributed to distributed operating systems is listed in table 2.1.

Thus, DYNAMOS should, to a certain extent, be able to provide these OS attributes to the user.
How DYNAMOS, adheres to these policies will be further explored in chapter 3.
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Property Summary

Transparency The use of multiple processors should be invisible (transparent) to the user [7]
Concurrency Computations can be done concurrently to improve throughput and response time [8]
Reliability If a part goes down, other parts of the system still work, or take over the work [7]
Resource management Load can be transferred to idle parts of the system [7]

Scalability Handle increased load and adding nodes without degrading performance [6]
Flexibility The most appropriate target for a type of computation can be selected [8]

Security As a regular OS processes should not interfere with each other, and

unauthorized access is prevented [6]

Table 2.1: Properties of a distributed OS

2.2 Distributed system management

“Large-scale distributed applications require different forms of coordination. Configuration is one of the
most basic forms of coordination.” [9] ZooKeeper, is one first generic applications that allow developers
to write their own coordination primitives for distributed applications. To manage the complexities of
distributed systems, other coordination tools have evolved.

These tools centralize services for configuration management, providing a consistent repository, and
ensuring that each node in the system is in sync with the latest configurations. Beyond configuration,
these tools keep a cohesive view of the system’s state, be it active or failed nodes. This overview facilitates
tasks such as leader election and distributed locking, optimizing resource management. Furthermore,
features like ”watches” alert nodes about specific system changes.

Among the tools available, prominent ones like ZooKeeper!, etcd?, Consul®, and Apache Mesos*
stand out, each catering to the specific needs of distributed systems.

2.3 Amsterdam Data Exchange Fieldlab

The following text has been distilled from the AMDEX funding proposal in which the Fieldlab goals are
outlined [2]. The ’Amsterdam Data Exchange Fieldlab’ is done by a consortium of the following entities:
Amsterdam Internet Exchange B.V, Dexes B.V., Stichting Amsterdam Economic Board, SURFsara
B.V., and the University of Amsterdam. The goal of the consortium is to develop a neutral, generic,
independent infrastructure that ensures sovereignty in data exchange initiatives with the working title
Amsterdam Data Exchange (AMDEX). With AMDEX it should be possible to:

On the supply side, offer interested parties reliable and fair data markets and contracts
Empower companies to let third parties use their data without giving a copy of the data
Use this FieldLab to demonstrate a few of the possible workflows

Facilitate data on AMDEX infrastructure

Use this lab to perform tests

Studies by the Dutch economic ministry and the European Commission show that the current infras-
tructure for safely sharing data is not adequate [2]. Even worse, there are a number of foreign large tech
companies that gather and own huge amounts of data, of which the consumers giving the data have no
control[2]. The AMDEX project is part of a larger project to tackle these types of problems. A concrete
example is medical data; hospitals and patients are open to sharing patient data with researchers but
can’t due to a lack of legal agreements and infrastructure.

At the request of the Amsterdam Economic Board, a few proof of concepts (POCs) have been done.
A few important problems that resulted from these POCs are listed below.

e For data suppliers there is a high technical challenge and legal red tape which makes it hard

Ihttps://zookeeper.apache.org/
’https://etcd.io/
Shttps://www.consul.io/
4nhttps://mesos.apache.org/
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e The first AMDEX use cases haven’t been designed for scalability

e Data suppliers are now usually limited to market parties that try to create a monopoly (loose
control over your data)

e Sharing over borders presents a lot of legal issues

Data Exchange Models

]

*  Trusted partners * Mo control on data = Participants create their
after placing on the oWn agreaments
= Known data-quality platfarm
= Everyone has control over
= Mutual trust that data *=  Data only accessible their own data
is not re-sold through the platform
= AMDEX ensures security
* Platform has it's own with interactions and
market place computations

Target datasharing transition wIIJ’JIAMDEx. From Peer-to-Peer and cenr;'a.rﬁ'zed platforms towards neutral,
decentral dota-sharing market places

Figure 2.1: Data sharing architectures [2]

The third column of figure 2.1 shows the target of AMDEX, an internet of data, where multiple
parties exchange data and algorithms in a secure, open, federated way.

2.4 Data-sharing terminology

e Data steward: entity within the DDM that owns datasets that can be exchanged

e Data analyst: person or institution that has entered into an agreement with a data steward to
interact with a dataset

e Data pod: entity in the data stewards domain that contains datasets in some form

Research on DDM has developed a set of typical patterns in which data can be exchanged, these
patterns are called archetypes [1, 3]. Whether a party is allowed to access data, and which archetypes
will be chosen to facilitate the data exchange, is encoded in policies. Thus, an agreement in a policy
leads to a chosen archetype, which leads to data exchange.

2.4.1 Archetypes

In general, the participating organizations in a DDM can share two kinds of resources: software and data
[1]. For legal requirements and costs, it can also be important where the data exchange takes place.
And lastly, who has agreements to access the data.

To more easily reason about the ways these data-transactions occur the term ‘archetypes’ has been
coined [3][1]. Figure 2.2 shows an overview of a set of archetypes. The UNL use-case from this thesis
focuses on the ‘Data through a trusted third party (TTP)’ and ‘Compute to data’ archetypes.

2.4.2 Policy

Within the AMDEX project, the part responsible for enforcing agreements is called a policy enforcer.
There is research in progress to make these agreements programmable through eFLINT [10], which would

10
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Type A Type B
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Operation Results a Service a Service
software
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Figure 2.2: Data-sharing archetypes [1]

enable an automatic policy enforcement framework. In this thesis, we mock this policy enforcer to mimic
request validation and have a source of archetype information.

2.5 Microservices

The concept of microservices was initially introduced in 2014 by Lewis and Fowler [11], and since then, it
has gained considerable popularity. Prominent organizations such as Netflix [12] and Zalando [13], among
others, have adopted microservices as the foundation of their architectural frameworks. While there exist
various approaches for implementing microservices, the utilization of lightweight Docker containers stands
out as the most widely recognized method. Nevertheless, specific language frameworks, such as Erlang,
Elixir, and Spring Boot for Java, have also emerged as proficient options for microservice development.
For the purpose of this thesis, however, Docker will be the primary focus.

Supposedly, there are many advantages to using microservices. These include flexibility in dealing
with uncertainties related to operation, maintenance, and evolution [14]. It also allows for greater soft-
ware development agility and improved scalability of applications that are deployed. Additionally, it
offers cheaper deployment costs by only scaling up selected Microservices that experience high-load [12].
However, microservices do add a lot of complexity to the system, especially in design, testing, and mon-
itoring [15]. According to the 2022 study Kubernetes benchmark [16], 53% of companies underestimate
this complexity.

Within this section, we delve into various orchestration tools for managing microservices, briefly
explore communication patterns, and discuss microservice best practices that will serve as points of
reference and utilization throughout this thesis.

2.5.1 Microservice orchestration

The most used Docker orchestration tools are Kubernetes, Docker Swarm, Apache Mesos, and RedHat
OpenShift which is actually built on Kubernetes. Although it is difficult to get exact numbers, most
online articles and studies agree that Kubernetes is the most-used platform and gaining popularity every
year [17-19].

Kubernetes is generally perceived as more complex, with a steeper learning curve, when compared to
Docker Swarm. However, it does offer more services and customization options. For example, allowing
custom resources definitions (CRDs) [20], operators [21], Kubernetes jobs [22], and make use of service
meshes [23].

11
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2.5.2 Microservice communication

Microservice communicate with each other using lightweight mechanisms, often an HTTP resource API
[11], which is a synchronous protocol, an asynchronous alternative is AMQP. For primary operations
such as data fetching or storing, HTTP REST is the best overall option thanks to its simplicity. If, on
the contrary, the service needs to dispatch lots of messages to other services and trigger heavy processes
that don’t need to be awaited, AMQP is a better option [24].

2.5.3 Microservice best practices

Wang et al. [12] performed an exploratory study on microservice best practices, conducting in-depth
interviews with microservice experts. The below paragraphs depend for a large part on that study,
combined with online sources.

2.5.3.1 Logging

Logging is a challenge in microservice architectures. If something happens, it would be near impossible
to check individual components for logs and correlate these to actual events [25]. Furthermore, setting
up logging and monitoring early is crucial to the success of a microservice platform [12].

Within the Kubernetes environment, there are several off-the-shelf solutions available. In essence,
Kubernetes will catch all output from a pod that is written to STDERR and STDOUT. A stack of
existing services can capture that output enhance it, store it centrally, and make it visual and able to
query.

Common solutions are the ELK stack, (Elastic search, Logstash, Kibana) or the combination of
Promtail, Loki, and Grafana. However, because the application is unaware of the logging solution, all
solutions are easily replaceable and can be switched if requirements demand.

2.5.3.2 Distributed tracing and Service Mesh

Metrics and traces are two more key components that enhance the monitorability of both the platform
and microservice application. Where logs only show what went wrong according to the application.
A trace would actually show the entire path, transit time, and time spent in services, of all requests.
Experts express that metrics and tracing must be set up as early in the process as possible, for a successful
microservice platform [12].

First, the distributed tracing ecosystem is very complex. It includes a dizzying array of projects
such as Zipkin, Jaeger, OpenTracing, OpenCensus, OpenTelemetry, and many many others, each with
partially overlapping sets of functionality. There are complex matrices of which projects can interoperate
with which other projects and in which ways. [26]

These metrics, allow for identifying bottlenecks and spotting errors that at first seemed unrelated.
Furthermore, a trace can be visualized which can help both with debugging and even showing parts of
the application architecture.

Again, there are several solutions for metric collection and tracing. Prometheus is the de facto
standard for metrics in Kubernetes and Zipkin and Jaeger are well-known tracing solutions.

This is where a service mesh comes in as a best practice. A service mesh is a dedicated infrastructure
layer built right into a platform [27]. A service mesh can handle metric collection, distributed tracing,
ingress encrypted traffic, load balancing, canary deployments, and more. All by injecting a sidecar
proxy into every microservice and taking over (HTTP) traffic. The most well-known service meshes for
Kubernetes are Istio and Linkerd, and other options include NGINX Service Mesh, Open Service Mesh,
and HashiCorp Consul.

2.5.4 Sidecar pattern

The sidecar pattern moves common functionalities into a separate container located close to the primary
application. The primary application will have one unified way to talk to the sidecar. Shared libraries,
logging, messaging, and configuration are common use cases for the sidecar pattern, which is good
according to the single responsibility principle [28]. The sidecar pattern also allows the sidecar and
primary application to have separate release cycles to allow development from different teams [28].
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2.5.5 gRPC

gRPC is a modern open-source high-performance Remote Procedure Call (RPC) framework that can run
in any environment. It can efficiently connect services in and across data centers with pluggable support
for load balancing, tracing, health checking, and authentication. It is also applicable in the last mile of
distributed computing to connect devices, mobile applications, and browsers to backend services. [29]

For communicating with a sidecar a lightweight protocol is preferred. An HTTP-based REST method
is common, but in most cases, gRPC will outperform REST [30, 31]. In short, gRPC is a binary protocol
that allows efficient data packing and transfer. For example, REST transfer text (JSON or XML), so
the message {“id” : 42} will be approximately 9 bytes. While the same message in gRPC binary would
be two bytes: “0x08 0z2a” [30]. Furthermore, gRPC supports unary and bi-directional streaming, which
allows the transfer of large amounts of data.

Remote gRPC functions are declared in ‘protocol buffers’, which can then be generated to eleven
common programming languages [32]. This allows language-agnostic interfacing. Supported language at
the time of writing are:

C# (or .NET)
C++

Dart

Go

Java

Kotlin
Node
Objective-C
PHP
Python
Ruby

2.6 Workflow tools

A workflow consists of an orchestrated and repeatable pattern of activity, enabled by the systematic
organization of resources into processes that transform materials, provide services, or process information
[33]. There are several off-the-shelf solutions for creating microservice workflows.

2.6.0.1 Argo

Argo Workflows is an open-source container-native workflow engine for orchestrating parallel jobs on
Kubernetes. Argo Workflows is implemented as a Kubernetes CRD (Custom Resource Definition) [34].

Argo allows the output of one container as input to the next container of the workflow. Simple data
like an integer or string can be transferred by outputting it to STDOUT. Complex data needs to be
transferred through an artifact, however. This can be as simple as writing to a local file towards storing
artifacts in external repositories like Amazon S3 storage.

2.6.0.2 Apache Airflow

Apache Airflow is a Python-based workflow scheduler, which can be used to schedule Kubernetes pods.
Communication between different pods would require external data transfer methods like databases,
AMQ messaging, or shared file systems. Airflow offers a high level of abstraction, its configuration in
code, or through the Web-UI makes it less dynamic, however.

2.6.0.3 Kubernetes Jobs

A Job creates one or more Pods and will continue to retry execution of the Pods until a specified number
of them successfully terminate. As pods successfully complete, the Job tracks the successful completions.
When a specified number of successful completions is reached, the task (ie, Job) is complete. [22] The
jobs can be configured to auto-delete after successful completion.
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2.7 Data pods

A data pod is an abstract concept in which an entity has a secure container to store data. Users might
have a data pod provided by their workplace, one from a commercial provider, and maybe even one
they host themselves. The Solid foundation [35] is a project that lets people store their data securely in
decentralized data stores called Pods, controlling which people and applications can access it.
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Chapter 3

DYNAMOS: A microservice-based
Operating System

In this chapter, we present the conceptual design of DYNAMOS. We describe the UNL use case [36] in
depth to derive the DYNAMOS requirements and architecture. Subsequently, we show how microservice
chains are generated and how these are used to dynamically create different microservice architectures.
Several types of possible microservice architectures are described, and how these can be dynamically
chosen.

Throughout this chapter, we reference back to the properties of a distributed OS, from table 2.1.
The following list summarizes how DYNAMOS adheres to these properties, these will be referenced
throughout the chapter to accentuate a feature.

OS1 Transparency: The user is agnostic to which archetypes or microservices are used within DY-
NAMOS

OS2 Concurrency: If there are multiple data stewards all will process concurrently, results are only
awaited if aggregation is required

0S3 Reliability: DYNAMOS will handle failed jobs by re-scheduling, and restarting DYNAMOS com-
ponents on failure

0S4 Resource management: Archetypes can be dynamically picked to distribute the load over the
system

0S5 Scalability: DYNAMOS components can be dynamically scaled based on system load

0S6 Flexibility: Specific archetypes, microservice architectures, or target systems can be dynamically
picked to handle certain request types

0OS7 Security: A full authorization flow is an integral part of the system

3.1 UNL scenario

The scenario chosen to test DYNAMOS with is the existing AMDEX UNL use case!. In this section we
discuss the use case, present a set of microservices that can be used to implement it, and finally list a
set of initial requirements to cover the case.

3.1.1 Actors

Figure 3.1 shows an abstract representation of the actors in DYNAMOS involved in the UNL use case. A
data analyst, through a frontend, requests an access token from the ‘orchestrator’. After gaining access,
the data analyst can query the data stewards. The following actors are part of the system.

e Frontend — Data analyst logs in, select a dataset, run ‘practice’ queries a synthesized dataset, and
can start different request types.

e Policy enforcer — Not part of DYNAMOS, checks policy between parties and provides access
tokens

Thttps://amdex.eu/news/sharing-research-data-under-ones-own-conditions/
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Orchestrator — Orchestrate requests to the system over the available computing space based on
data from the policy enforcer.

Distributed agents — Agent running on a data steward’s system, accepts, checks, and regulates
incoming requests and deploys the required microservice chains

Data store — Distributed data store accessible by the agents and the orchestrator. Stores system
state, and objects related to the distributed system e.g. archetypes, microservice metadata, agent
configurations etc.

Data pod — Some type of secure data store containing datasets

O DYNAMOS

DYNAMOS internal
communication

) User initiated

communication

Data analyst

Distributed
agent

=

, 4

Microse_rvice Data pod
chain

deployment

Policy
enforcer
Orchestrator

Figure 3.1: Abstract representation of DYNAMOS

Data store

3.1.2 Scenarios

For the UNL use case, we define two scenarios that work with two different archetypes, namely the ‘com-
pute to data’ and the ‘data through trusted third-party’ archetypes, henceforward called computeToData
and dataThroughTtp. The goal of the data analyst in the scenario is to analyze the wage information of
two universities. Figure 3.2 shows the first scenario with the following steps.

3.1.2.1 Scenario one

1.

Request approval — User requests approval from the ‘orchestrator’, listing the intended target data
stewards

Validation Request — The orchestrator simply passes on the request. The ‘policy enforcer’ checks
existing agreements and returns whether the requests are allowed. Returns an access token for the
data analyst.

Composition request — The orchestrator chooses an archetype, generates a job ID, and sends this
information including their role in the archetype to all distributed agents

Accepted request — The orchestrator checks whether all targets are online, and returns their
endpoints, job ID and the access token to the data analyst

Data request — The data analyst can send a data request with queries and algorithms to the given
endpoint(s), and wait for results
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Figure 3.2: ComputeToData scenario

3.1.2.2 Scenario two

Figure 3.3 shows the second scenario with the following added steps.

6. Forward request — Data request is forwarded to all data providers

7. Data transfer — Requested data of the data providers are returned to the trusted third party
8. Process data — The data is further processed by the third-party

9. Return results — Final results are returned to the data analyst
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Figure 3.3: DataThroughTtp scenario
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3.1.3 Microservices

For both scenarios, two basic microservices are required. A ‘query service’ that performs a SQL request
on the dataset and an ‘algorithm service’ that can process the data e.g. perform a wage gap analysis.

However, to make the chains larger and to show the power of DYNAMOS’s dynamic architecture we
add three more microservices. These microservices could be written in different programming languages.
DYNAMOS facilitated this by being language agnostic towards microservice chains.

3.1.3.1 Anonymize service

The data steward has added a system rule that certain columns of the dataset need to be anonymized
before leaving the system. This service could also be part of a policy agreement, forced by the policy
enforcer.

3.1.3.2 Graph service

The data analyst in this scenario has the option of adding a flag in the request to ask for a graph to be
generated. This adds the graph service that will convert the results into a graph.

3.1.3.3 Aggregate service

For the dataThroughTtp scenario, a ‘aggregation’ service is added to combine the results of all data
stewards before further processing.

3.2 Requirements

Based on the scenarios we can create the initial requirements for DYNAMOS and its components.

3.2.1 DYNAMOS in general

DYN1 Authorization flow that allows every component to make sure the user has access and that allows
access revocation

DYN2 Communication protocol for inter-component messaging

DYNS3 Distributed data store for configuration management, system state, and concurrency management
(concurrency 0S2)

DYN4 Components should be replaceable as much as possible to prevent technology lock-in

DYN5 Basic security features such as RBAC, user authentication, and mTLS are supported (security
0S7)

3.2.2 Orchestrator

ORCHI1 Determine the availability of distributed agents

ORCH2 Query and interpret decisions of the policy enforcer

ORCH3 Make decisions on which archetypes should be used based on different variables (flexibility OS6)
ORCH4 Dynamically change an archetype when appropriate (transparency OS1)

ORCHS5 Inform the data analyst of approved data providers and how to reach them

ORCHG6 Inform distributed agents on approved data requests

3.2.3 Distributed agent

AGENT1 Create and manage data request execution for a user

AGENT2 Ensure proper authorization and security

AGENT3 Create microservice chains

AGENT4 Ensure resources are not consumed by removing services that are not actively in use (resource
management 0S4)

AGENTS5 Determine action on results of a local microservice chain, send it to the user or a trusted-third-party

AGENT6 Ensure data requests can be retried after unexpected failures (reliability OS3)
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3.2.4 Microservice chain jobs

JOB1 A form of job that can process different chains on every request (flexibility OS6)

JOB2 Effectively pass on results of a computation from a data-exchange microservice, to the next mi-
croservice in the chain. Or if the chain is finished to the distributed agent for further processing

JOB3 Be generalized enough to work with different datasets and perform transformations on the data

JOB4 Language agnosticism. Any mix of programming languages can facilitate data exchange jobs

JOB5 Based on the archetype, microservices could run on different parts of the system

3.2.5 Frontend

FE1 Login functionality to an identity server
FE2 Load a target dataset with synthesized data to ‘practice’ the algorithm
FE3 Fill out a form to perform a SQL data request, authorization is seamlessly provided

3.3 System components

In this section, based on the requirements from chapter 3.2, choices in technology to implement the UNL
scenarios are evaluated and selected.

3.3.1 Communication protocols

DYNAMOS is designed to handle external communication from data analysts solely via HTTP through
the frontend. However, for internal communication between DYNAMOS components, different protocols
can be used. AMQP stands out as a common asynchronous alternative to HTTP for this purpose,
especially when services dispatch messages frequently that don’t require immediate responses [24].

The orchestrator plays a pivotal role by relaying messages to both the policy enforcer and the dis-
tributed agents without necessarily expecting responses (requirements: ORCH5, ORCH6). Similarly,
agents must communicate with each other under specific archetype scenarios (AGENTS5). Given these
communication needs, AMQP is a more fitting choice. Adopting AMQP also offers benefits like guar-
anteed message delivery and retry mechanisms. Figure 3.4 provides a visual representation of how
communication is structured in DYNAMOS.

DYNAMOS employs RabbitM@Q for asynchronous message passing. While there are numerous alter-
natives available, RabbitMQ stands out due to its ease of implementation, comprehensive feature set,
and broad compatibility with various programming languages. Kafka is another prominent contender,
and it’s been employed in other POCs within the AMDEX project. However, Kafka is primarily tailored
for high-throughput event streaming, rather than traditional queuing systems. Additionally, Kafka has
the best support in the Java/Kotlin ecosystem, which DYNAMOS does not use, making RabbitMQ a
more fitting choice.

3> AMQP Trusted third party Data Steward
HTTPS
Microservice
chain
deployment

Microservice
chain
deployment

Distributed
agent

Distributed
agent

| |
) 1
| H |
& T Orchestrator |
| enforcer )
\ |

Data analyst N

Figure 3.4: DYNAMOS communication protocols

19



CHAPTER 3. DYNAMOS: A MICROSERVICE-BASED OPERATING SYSTEM

3.3.2 Sidecar pattern

DYNAMOS employs a sidecar container to encapsulate its RabbitMQ implementation. Instead of inter-
facing directly with RabbitMQ), services communicate with this sidecar using gRPC. DYNAMOS defines
a standard set of function definitions and messages in protocol buffers, to invoke the sidecar functions.
This sidecar approach accomplishes several objectives:

e It establishes an internal communication protocol, as indicated in DYN2.

e As per DYN4, it mitigates the risk of technology lock-in. Notably, the individual services within
DYNAMOS remain agnostic to the underlying communication system. While RabbitMQ serves
as the current backbone, it can be seamlessly replaced, by for example Kafka, without requiring
changes to the application code.

e With reference to JOB4, this design promotes language agnosticism. Irrespective of the program-
ming language, all services utilize the same communication library. Thus, if a new data exchange
service uses a different language, there’s no need to integrate with a new library for backend mes-
saging connectivity.

3.3.3 Container platform

Kubernetes is the chosen container platform for running DYNAMOS. As described in chapter 2.5, the
amount of features in Kubernetes makes it a better choice than Docker Swarm. Furthermore, Kubernetes
is the most used container platform, which makes it a good candidate for running an open-source platform
to experiment with microservice chains. Finally, Kubernetes works with existing service meshes, which
can be useful tools in self-adaptation scenarios [23, 37].

Kubernetes ‘namespaces’ will be used to simulate distributed environments, in which DYNAMOS
has its own namespaces, and each ‘data steward” will have a namespace. In reality, this is not a hard
segregation without implementing specific network protections on a namespace, but it does come close
to simulating a distributed system. Furthermore, it allows for easy local testing.

RedHat OpenShift is an enterprise solution, that can be installed locally as well. It builds on Kuber-
netes and thus has its own ecosystem, which makes the learning curve steeper. For this reason, OpenShift
was not selected.

3.3.3.1 Service mesh

Service meshes offer a range of benefits, including monitoring capabilities, enhanced security (as refer-
enced in DYN5), and potential assistance in self-adaptation scenarios [23, 37].
For its operations, DYNAMOS has chosen Linkerd?. This decision is primarily rooted in Linkerd’s
reputation for having a lightweight traffic proxy, in contrast to Istio, which tends to have greater overhead.
DYNAMOS'’s reliance on RabbitMQ for internal messaging, however, means that some of the built-in
security features of a service mesh are bypassed. As a result, the primary advantage currently being used
from the service mesh is the distributed tracing capability, facilitated by the Jaeger add-on.

3.3.3.2 Logging

DYNAMOS uses the trio of Promtail, Loki, and Grafana as its logging solution, primarily due to its
lightweight nature. Unlike the ELK stack, which indexes each log message individually, Loki indexes the
application logs based on the metadata from Kubernetes pods/environments.

3.3.3.3 Metrics
For metrics collection, ‘Prometheus’ is used, and the metrics are forwarded to Grafana for dashboarding.
Since Prometheus is the de-facto standard in Kubernetes, no serious alternatives were considered.

3.3.3.4 Ingress

Nginx is installed as an ingress controller. Within the Linkerd service mesh environment some other
common ingress controllers, like Traefik, required extra configuration. Nginx was easy to use and fits
well within the service mesh.

2https://linkerd.io/
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3.3.3.5 Distributed tracing

As previously mentioned, Jaeger is integrated into the Linkerd deployment to facilitate distributed trac-
ing.

3.3.4 Programming language

DYNAMOS is written in the Go programming language [38] for several practical reasons.

First, much of the Kubernetes ecosystem is built using Go. As a result, the Go SDK is a mature
option for interacting with Kubernetes APIs. Should there be a need to develop a custom Kubernetes
scheduler or Custom Resource Definition (CRD) in the future, using Go would simplify the task.

Furthermore, Go inherently supports asynchronicity, which aligns seamlessly with DYNAMOS’s dis-
tributed architecture, enabling efficient asynchronous message processing.

Additionally, Go’s robust compatibility with gRPC serves as an added advantage, making it the
language of choice for DYNAMOS.

3.3.5 Configuration management

Building upon the context set in chapter 2.2, DYNAMOS needs a distributed configuration tool to fulfill
requirements ORCH1, ORCH4, DYN3, and AGENTS3.

The choice for DYNAMOS was etcd, a coordination tool and key-value store. Acting as the central
knowledge hub for the MAPE-K control loop mechanism [4], etcd uses a Go-based architecture, is used
by Kubernetes for service naming and other functions, which makes ensures it has a mature and robust
Go SDK, which fits DYNAMOS well. It is utilized for various use cases, such as:

e Distributed agent availability. Upon startup, an agent registers itself, allowing the system to
discover available agents, their contact methods, and relevant metadata (ORCHI).

e Microservice metadata. Details on available microservices further discussed in chapter 4.3

(AGENTS3)

Archetype configuration, further discussed in chapter 4.3 (AGENT3)

Request types, further discussed in chapter 4.3 (AGENT?3)

e Job information, further discussed in chapter 4.3 (AGENT6)

ZooKeeper, arguably a better coordination system, leans more towards optimization for Java and
C environments and isn’t fundamentally designed as a key-value store like etcd. On the other hand,
platforms like Apache Mesos and Consul represent comprehensive ecosystems. While powerful, their
steep learning curve is excessive for the current DYNAMOS implementation.

3.4 Microservice chains

So far we have defined our scenario and identified the major components of our system. We have discussed
how microservice chains are an integral part of this system. In this section, we define the language that
we use to reason about these chains and look at what information is needed for an algorithm to create
a chain.

3.4.1 Definition

A microservice chain is a DAG of microservices that together process a data-sharing request. A microser-
vice chain has a minimum amount of required services to be able to process a request. A chain might
have optional microservices that add extra functionality. Figure 3.5 shows a valid microservice chain for
the SQL data request from our scenario.
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query_service

anonymize_service

aggregate_service

algorithm_service

graph_service

Figure 3.5: SQL-like data request microservice chain

3.4.2 Chain generation

When generating a microservice chain, requirement JOBb5 states that depending on the archetype, mi-
croservices will run in different parts of the system. By analyzing figure 2.2 from chapter 2, we observe
the following:

e The entity providing the software consistently sends it to the same destination as the data. Depicted
by the green and red arrows in the figure.

e In DYNAMOS terminology, the destination of these arrows is referred to as the ‘computeProvider’.
Subsequently, the origin of the red arrow, or the party sending the data, is named the ‘dat-
aProvider’.

e The recipient of the results might differ per archetype. So this party will be denoted as the
‘resultRecipient’ in DYNAMOS. For our scenario, however, this is always the requesting data
analyst. Thus this field is ignored from now on.

To make this distinction clear in the DAG, microservices will be labeled with their intended func-
tionality, this can be seen in the updated microservice DAG shown in figure 3.6.

Continuing, each data steward, or trusted third party, will then have a ‘Role’ assigned, based on the
archetype to determine the service it needs to run:

e all: creates all services labeled computeProvider and dataProvider
e computeProvider: only creates services labeled computeProvider
e dataProvider: only creates services labeled dataProvider

As an example, the below list shows possible outputs for generating a microservice chain for the
‘sqlDataRequest’ type using two archetypes.

3.4.2.1 computeToData
The data steward has the role ‘all’

e Generated chain with two optional services:

— query
— anonymize
— algorithm
— graph
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3.4.2.2 dataThroughTtp

The data steward has the role ‘dataProvider’
The third party has the role ‘computeProvider’

e Generated chain by the DataProvider:

— query
— anonymize

e Generated chain by the ComputeProvider:

— aggregate
— algorithm
— graph

:label dataProvider

/ :label dataProvider

anonymize_service

aggregate service :label computeProvider

:label computeProvider

graph_service :label computeProvider

Figure 3.6: SQL-like data request labeled microservice chain

3.5 Chain job architectures

The next step is translating microservice chains into executable microservice jobs. Two main approaches
for executing microservice chains have been identified. The first approach is having long-running, per-
sistent microservices on the data steward nodes. The second approach is using a dedicated workflow
tool to spawn single-use, ephemeral jobs for individual data-sharing requests. Both approaches are
viable and would work depending on a data steward’s or user’s requirements.

Another consideration is how data moves between the microservices, especially with the potential for
large transfers in DDM scenarios. Within the data stewards, only the distributed agent communicates
directly with DYNAMOS via RabbitM(Q, which leads to two main data transfer methods:

e The agent has to send the data request to the first microservice in the chain. The result needs to
be received by the agent for further processing, to other agents, or back to the requester

e The microservices need to forward data to further services along the chain in a language-agnostic
manner

DYNAMOS is flexible enough to handle both the ephemeral and persistent architectures which will
be described in section 3.6. In this section, we discuss the communication methods and data transfer
methods for both options, although, in the current implementation, only ephemeral jobs have been
implemented.

Note, for the current DYNAMOS implementation, the same RabbitMQ instance is used by the data
stewards, microservices, and the orchestrator. As just mentioned, in an actual scenario the distributed

23



CHAPTER 3. DYNAMOS: A MICROSERVICE-BASED OPERATING SYSTEM

agent would be the only entity fully connected to the general RabbitMQ server. The internal communi-
cation on the data steward might look different, for example:

A local instance of RabbitMQ

Connected to the central RabbitMQ), as a user with less access
Different service bus or queueing system

HTTP only

Extra modules to handle different formats would need to be created if this is a system requirement.
For the rest of the thesis we assume there is a RabbitMQ system that can reach the local distributed
agent.

3.5.1 Ephemeral jobs

The first microservice architecture involves ephemeral jobs. These jobs are created on demand, executed,
and subsequently removed. The following advantages and disadvantages have been identified for this
architecture.

3.5.1.1 Advantages

e Resource efficiency, resources are utilized only when a task is being executed.
e Security:

— Limited exposure time, ephemeral jobs run for a short duration, which reduces the window of
opportunity for attackers to exploit any potential vulnerabilities.

— Reduced attack surface, as these jobs run for a specific task and then terminate, they don’t
keep unnecessary services or open ports, thus reducing the available attack surface.

— Fresh state, with each execution of an ephemeral job, a clean state is provided. This ensures
that any potential malware or rogue processes from a previous run don’t carry over.

— Isolation, ephemeral jobs are isolated from the host and other jobs. This can prevent the
spread of a potential security breach from one job to another or to the host system.

3.5.1.2 Disadvantages

e Startup overhead, each job incurs an initialization overhead which can be costly for frequent, short-
lived tasks.

e Resource spikes, concurrent initiation of many single-use jobs can lead to sudden, high demands
on resources.

o Complexity, workflow tools introduce an additional layer of technology and potential failure points

3.5.1.3 Existing workflow tools

For executing microservice chains as ephemeral jobs in DYNAMOS, Kubernetes jobs are used. Primarily
due to their compatibility with Go, which DYNAMOS is written in. Kubernetes jobs natively support
failure handling and resource cleanup, making them not only efficient but also resilient.

Argo has built-in solutions for passing the output of a service to the next service, however, these are
‘heavy’ solutions requiring file I/O and external artifact repositories. A ‘hello world’ sample of Argo [39]
with two services, takes around 20 seconds to run, see appendix B.1 for Argo output. This delay can be
attributed to Argo’s sequential execution model where it waits for one service to finish before launching
the next, introducing a startup delay for each service in the chain. Argo does support parallel processing,
but then the output of a previous service can not be used.

Apache Airflow has to be programmed in Python. This conflicts with DYNAMOS’s Go language
base, so was not seriously considered as an alternative.

3.5.1.4 Transferring data

For ephemeral jobs, transferring data through RabbitMQ is not viable. It would entail creating and
deleting multiple queues per request, which adds overhead, and another easy point of failure. DYNAMOS
already uses gRPC to transfer data to the sidecar, which brings us to one of the core ideas of this thesis
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on how to transfer data. We have developed a generic way of using gRPC to pass along data as an
argument to a following microservice. This method takes advantage of the following facts.

gRPC is language agnostic by default (JOB4)

Data stays in memory, it never goes to disk

A Kubernetes job can be created with multiple containers, inside a single Pod. Pods communicate
on ‘localhost’ level, or ‘interprocess communication’ (IPC). This makes the network latency of
transferring data from service to service within a Pod negligible

gRPC wire-protocol is more efficient in (un)marshalling objects compared to text-based methods
(JSON or XML), resulting in less overhead

gRPC supports ‘Client streaming RPC’, which means that large datasets can be transferred in a
stream of messages to preserve internal memory usage. This does require more complex message
handling code

Finding 1: Transferring data within a Kubernetes job can be made theoretically efficient using
a generic gRPC implementation

Propagation throughout DYNAMOS would require the results to be packed into an AM(Q message,
by the existing sidecar. See figure 3.7 for a schematic representation of this concept.
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Figure 3.7: Ephemeral job I/0

3.5.2 Persistent microservices

In the second microservice architecture, microservices run persistently within the cluster. Each service
listens to a queue for incoming messages. Messages will need to contain routing information to find their
way to the correct microservices. A timer will be set to remove services that have been disused for a
longer period of time.

3.5.2.1 Advantages

e Readiness, always on and ready to handle requests, minimizing cold start delays.
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e (Consistent performance, no need to bootstrap the environment for each request.

3.5.2.2 Disadvantages

e Resource consumption, services consume system resources during idle times
e Potential security risks: prolonged attack exposure, especially if misconfigured.
e Lack of isolation, users will share the same services

3.5.2.3 Transferring data

RabbitMQ can handle data transfers between microservices. Routing can be managed by including
the microservice chain data in the message. But as noted in chapter 3.3.2, DYNAMOS uses a sidecar
container to generalize AM(Q communication. So, to connect with RabbitMQ, microservices need a
sidecar, which adds an extra gRPC data transfer step. Figure 3.8 shows this setup.

Directly transferring data to the next service is an option but has drawbacks. Using RabbitMQ
directly means every microservice needs a RabbitMQ client, adding complexity to data-exchange mi-
croservices. Sending data using gRPC, as it does to the sidecar pattern, is another option. But this
misses out on RabbitMQ’s asynchronous processing, making it harder to horizontally scale services and
possibly creating bottlenecks.
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Figure 3.8: Persistent job I/0

3.6 Dynamic architectures

As outlined in Section 3.4, microservice chains are generated based on the selected archetype. Then in
Section 3.5, we discussed two distinct microservice execution architectures: ephemeral and persistent. In
this section, we’ll delve into how to dynamically select archetypes and how distributed agents determine
which microservice architecture to use. Crucially, both the microservice architecture and the archetype
can vary per request, even coming from the same user.
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3.6.1 Dynamic microservice architectures

The distributed agent is responsible for generating the microservice chain and either creating an ephemeral
job or persistent microservice architecture, by default an ephemeral job will be created for a request.
At the moment there are three sources of information that would allow the agent to create a persistent
architecture instead.

e Enforced by the policy enforcer
e Configured by the data steward in the distributed data store
e Configured in the type of request, for certain request types specific architectures could be optimal

This allows DYNAMOS to be flexible enough to create different architectures, including architectures
that have not been discussed so far. Furthermore, the distributed agents can function in a lightweight
MAPE-K [4] loop to remove microservices after a certain period of disuse or upgrade microservices when
new versions become available.

3.6.2 Dynamic archetypes

In our scenario, we are working with two archetypes, computeToData, and dataTroughTtp. In this
section, we discuss how per request, the backend archetype could change, and DYNAMOS handles this.
There exists an algorithm to map a type of data request to a best-fit archetype [3], however, for now, we
assume this to be done when creating an agreement, thus the policy enforcer contains a set of best-fit
archetypes for a request.

The following events are a few examples of an event that triggers a change in the chosen archetype.

e The agreement has been changed, a different archetype is allowed by the policy enforcer
e A flag has been added to the data request to force data aggregation in an ‘aggregate’ service
e One of the systems is under a high load, offload data processing to other parties

The first occurrence is event-based, and easily implemented based on the configuration set in the
distributed data store, further explored in Chapter 4.5.

The second occurrence is actually not trivial, it requires extra information that that service is only
allowed to run on a third party. At that point, if the correct archetype is not in place the orchestrator
and policy enforcer will be involved to check if running that archetype on a trusted third party is allowed.
The implication of this is that there needs to be an extra middleware, or gateway between the frontend
and the data stewards, this is further discussed in Chapter 4.5.

The last occurrence requires the orchestrator to implement a MAPE-K loop on the system’s extra-
functional properties. In the future, we imagine an archetype selection algorithm that would pick a fitting
archetype based on these and other possible events, the next paragraphs describe two such algorithms.

3.6.2.1 Extra-functional properties

The term extra-functional properties is broad and can mean anything from safety and security require-
ments to performance requirements, user experience, and more. Assuming that scalability, security, and
resilience are all basic requirements of DYNAMOS,; in this thesis we take a quick look at two properties,
namely energy consumption, and user experience. In which user experience is seen as the time it takes
to complete a request.

It is impossible to say anything about power consumption profiles without specific hardware-, software
architectures, and testing. Literature however suggests that energy efficiency does not scale linearly with
CPU usage [40] and in most cases, an optimum CPU load for energy consumption is around 80%. This
means that if a data steward is under high load, a different archetype can be dynamically selected, if
allowed by the policy enforcer, to adhere to the resource management property OS4.

Listing 3.1 shows a simple algorithm that DYNAMOS could use to select an archetype. This algorithm
is based on the assumption that distributing the load more evenly trumps the cost of data transfer. The
algorithm is not definitive and should be adapted after testing energy consumption on hardware that
will be used in a DDM.

if dataProvider CPU and memory < 80 %
if user does not need aggregation:
computeToData > dataThroughTtp
else:
if computeProvider CPU and memory < 80 %:
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dataThroughTtp > computeToData
else:
computeToData > dataThroughTtp
goto end

if dataProvider CPU and memory > 80 %:
if computeProvider CPU and memory < 80 %:
dataThroughTtp > computeToData
else:
computeToData > dataThroughTtp
goto end

end:
distribute roles

Listing 3.1: Archetype selection algorithm

The user experience is more straightforward. The archetype that has the fewest data transfers,
will have the least latency. In our scenario, the computeToData archetype will always outperform the
dataThroughTtp archetype. By adding a weight to the archetype configuration, an archetype selection
algorithm will include this in the final archetype selection.

28




Chapter 4

DYNAMOS: Implementation

As described in chapter 3.3 DYNAMOS runs on a Kubernetes platform, and the individual components
are written in Go. The project’s codebase is available on GitHub, and can be used as a reference with
this chapter.

DYNAMOS is deployed in several layers depicted in figure 4.1, the core deploys all centralized
components required for messaging, logging, tracing, metrics, and the distributed datastore.

The orchestrator layer is deployed after the core has been deployed, at which point DYNAMOS is
ready to receive requests. How requests are processed is dependent on the data stewards that are online
with a distributed agent. The frontend layer is used for login and sending requests to DYNAMOS,
at the time of writing this part is not yet fully operational. The component deployment is managed
through Helm ‘the Kubernetes package manager’. The DYNAMOS images are built locally with the
help of Makefiles. Exact installation and build instructions can be found in Appendix A.
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Figure 4.1: Overview DYNAMOS components

We start this chapter with a generic architecture overview, then go into more depth about how eted is
used within DYNAMOS. Subsequently, how to distributed agents generate microservice chains, and how
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persistent jobs and ephemeral jobs are created. Finally, the chapter touches upon the gRPC messaging
framework, distributed tracing, and the DYNAMOS API.

4.1 Architecture

DYNAMOS follows the client-server architectural pattern. In which the client, the data analyst, requests
access to data resources, and sends data-sharing requests to these resources. In Chapter 3, several figures
have already shown this design in several levels of abstraction. Figure 4.2, shows a similar design, now
including the message definitions.
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Figure 4.2: DYNAMOS architecture

4.2 Configuration management

As briefly discussed in chapter 3.3.5, DYNAMOS makes use of ‘etcd’ as a distributed datastore. Etcd is
used for static configuration, reactive configuration management, and health checks.

4.2.1 Static configuration store

To simulate the work of the policy enforcer the configuration/etcd launch_files directory contain JSON
files that represent static configuration, loaded by the orchestrator on startup. The use of this static
configuration is explained in chapter 4.3.

30


https://github.com/Jorrit05/DYNAMOS/tree/main/configuration/etcd_launch_files

CHAPTER 4. DYNAMOS: IMPLEMENTATION

File Goal

agreements.json Simulated agreements between consortium partners and a data analyst
archetype.json Archetype configuration

datasets.json Metadata regarding existing datasets

microservices.json  Microservice metadata, label and allowed outputs
requesttype.json Configuration regarding existing request types (sqlDataRequest)

Table 4.1: Static configuration files

4.2.2 Reactive configuration

When a user requests a transaction, a job is created with a single queue to process messages for this
job. For as long as the user has valid access, the same queue will be re-used for future jobs, to save on
the overhead of constantly creating and re-creating queues. At creation information of the queue will
be stored in etcd, with a timeout of 10 minutes. Every time the user sends a request, the lease on the
eted key will be renewed for another 10 minutes. After the timer expires, however, the user has been
inactive too long and the queue and related job information will be deleted, requiring the user to get
new approval. In the future, this would work differently based on the expiry of user access tokens.

A similar system can be implemented for persistent microservice architectures, to remove services
that are inactive for a longer period of time.

4.2.3 Health checks

To determine distributed agent availability, an agent registers itself on startup with the metadata from
the below table. When a user request comes in, the request is checked against the existing policy to
determine allowed data stewards. After this, it is matched again against actual available agents. If an
agent goes offline for some reason the etcd key is removed, this could be extended in the future to send
out alerts when this happens.

Metadata Note

Name Agent name
RoutingKey  Used by the messaging solution to identify this agent
DNS HTTP endpoint of this agent

Table 4.2: Agent information

4.2.4 Etcd keys

Key path Contains

Jagents/ < Agentname > Agent configuration
Jagents/jobs/ < Agent name > / < User name > | < Job name > Composition request data
Jagents/jobs/ < Agent name > /queuelnfo/ < Job name > Queue attached to a job
Jarchetypes/ < Archetype name > Archetype configuration
/datasets/ < dataset name > Dataset metadata
/microservices/ < Microservice name > /chainMetadata Microservice metadata
/policy En forcer /agreements/ < data steward name > Agreements for data-sharing
/requestTypes/ < request type name > Request type information

Table 4.3: Etcd keys

31



CHAPTER 4. DYNAMOS: IMPLEMENTATION

4.3 Microservice chains

We discussed the concept of creating microservice chains in chapter 3.4. In this section, we look at the
exact configuration and data required to actually create the chains. all data provided below is stored in
eted.

4.3.1 Defining request types

Listing 4.1 shows the type of request that is used in our scenario, “sqlDataRequest”. Which will be used
for querying a SQL-like data store, and allowing an analysis of the queried data. In the future other types
can be introduced to allow different data-sharing scenarios, for example, “federatedLearningRequest”.

As discussed in the scenario chapter 3.1, a request type can have required services and optional
services.

{
Ptype”: ”"sqlDataRequest”
"requiredServices”: [”query”, "algorithm”],
“optionalServices”: ["aggregate”, ”anonymize”, ”graph”]
}

Listing 4.1: Request Types

4.3.2 Defining microservices

Listing 4.2 shows a list of all available microservices. The ‘allowedOutputs’ field denotes valid output
microservices for each service, in other words, it lists the services that are equipped to handle the output
of this service.

The ‘label’ field is used to indicate the role of the microservice in a DDM archetype, as discussed in
chapter 3.4.

[

» name” : ”unI‘y” ,
”?label”: ”dataProvider” ,
?allowedOutputs”: |
” M ”
algorithm?” ,
”anonymize”

?name” : ”anonymize” |

”label”: ”dataProvider” ,

?allowedOutputs”: |
”algorithm?”

]

?name” : ”algorithm?” |
”label”: ”computeProvider” ,
?allowedOutputs”: |
” ”
graph
]

»name” : ”graph” ,
”label”: ”computeProvider” ,
? allowedOutputs”: []

m—

"name” : " aggregate”
?label”: ”thirdParty”,
? allowedOutputs”: [”algorithm?” ]

Listing 4.2: Microservice metadata
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4.3.3 Defining archetypes

The only relevant information required is who the ‘computeProvider’ in an archetype is. Suppose that
one is the same as the dataProvider (computeToData). This means all services can be scheduled with
the same data steward. If there is another party, it can be assumed that the policy enforcer declares
who that third party is. Listing 4.3 shows the simple configuration required as to what an archetype is.
The ‘weight’ property, is not currently implemented. As discussed in Chapter 3.6, it would be used to
pick one archetype above the other, when all other archetype selection algorithms don’t have a specific
preference, in which a lower weight constitutes higher preference. The reason for computeToData to be
picked above dataThroughTtp, is that its response is faster due to having fewer data transfer points.

[

{
”name” : ”computeToData” ,
?computeProvider”: ”dataProvider” ,
”resultRecipient”: "requestor”,
?weight”: 100

}7

{
?name” : ”dataThroughTtp” ,
”computeProvider”: ”other” |
?resultRecipient”: ”"requestor”,
”weight”: 200

}

Listing 4.3: Archetype config

4.3.4 Generating the chain

Based on the archetype, the orchestrator creates one of three roles for all involved parties and sends this,
together with relevant user and job information to the distributed agents, this is called a ‘composition-
Request’. On arrival of a compositionRequest, the distributed agent saves all information regarding
the job, role, request, and user in etcd.

4.3.4.1 Ephemeral jobs

The distributed agent, having a role, will at the moment the request comes in check which required and
optional microservices are needed, and generate a DAG corresponding to the request type by using a
‘topological sort’” algorithm [41].

It is important to note that a topological sort (and DYNAMOS) can not handle cyclical references.
This means that a microservice chain developer using DYNAMOS will need to make definitive choices
on a valid order of services. This will be assisted by validation functions when uploading or updating
microservice metadata and offering a graph generation service (like figure 3.5) for visually validating
microservice chains.

Appendix B, shows how a Kubernetes job is created in Go.

4.3.4.2 Persistent jobs

The moment a composition request comes in, the distributed agent checks if the microservice exists. If
not, the microservices of this request type are created. Timeouts on each service will be set to promote
clean-up if services are not used for a longer period of time.

4.4 Ephemeral job data transfers

In section 3.5, it was discussed how for persistent jobs, routing information could be generated upfront and
passed with each request. How the generic gRPC implementation for ephemeral jobs works is discussed
in this section. As an example, we take the dataThroughTtp archetype, in which the data steward with
the ‘dataProvider’ role will deploy a microservice chain containing the ‘query’ and ‘anonymize’ services.

The microservice chain, always ordered in line with its DAG, is passed into the deployment function.
In our example that is first ‘query’ and then ‘anonymize’ service. Each microservice will get a designation
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‘first’, ‘last’, or ‘both’, and the address of the sidecar. The first service will initialize the sidecar and wait
for an incoming message, process it, and send it to the next link. The last service will connect back to
the sidecar to send back the results. The default gRPC port of the sidecar container is set at 50051, so
the communication flow of this chain will look like figure 4.3. The algorithm is shown in listing 4.4.
The demo microservices are designed to exit after successfully processing a single message. This
could be different for more complex scenarios, for example, the ‘aggregation’ service would need to
process several messages. Messages contain a unique ID for every separate job, it would be possible to

check if a service is receiving the correct messages and quit after a specified number.
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{= |
| |
| Job |
| |

Query - Anonymize
| localhost:50052 1 localhost:50053 |
Data
| y To localhost:50052 + 1 |
| |
| Sidecar i |
Request localhost:50051 | Result /
N To localhost:50051 + 1 Last, to localhost:50051 _
E Data
request

N N J

T

AMQP

AMQP
——> gRPC

Rest of DYNAMOS /
Other data stewards

Figure 4.3: Example communication flow

firstPort = SidecarPort + 1
first = true

;| last = false

numberOfMicroservice = length(microserviceChain)

| designatedGrpcPort = firstPort

for i, microservice in microserviceChain {
designatedGrpcPort ++

if i == numberOfMicroservice-1 {
lastService = true

container := vi1.Container{

Name : microservice.Name,

Image: microservice.Name + :latest

Env: [Jvl.EnvVar{
{Name: "DESIGNATED_GRPC_PORT", Value: designatedGrpcPort},
{Name: "FIRST", Value: first},
{Name: "LAST", Value: last},
{Name: "JOB_NAME", Value: jobNamel},
{Name: "SIDECAR_PORT", Value: SidecarPort},
{Name: "OC_AGENT_HOST", Value: tracingHost},
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1,
}
job.Spec.Template.Spec.Containers = append(job.Spec.Template.Spec.
Containers, container)
firstService = false
}
job.Spec.Template.Spec.Containers = append(job.Spec.Template.Spec.Containers,
addSidecar ())

Listing 4.4: Adding microservices to the job

4.4.1 gRPC message size

The default max size of a gRPC method is around 4MB, making the max query size to be around the
30.000 records used in the experiments of Chapter 5. The current implementation of gRPC is a ‘unary
RPC’, the client sends a single request to the server and gets a single response back. Unary RPCs set
to unlimited size, but can be inefficient and potentially problematic for very large datasets because they
require enough memory to hold the entire message on both the client and the server. Streaming data is
a possible solution.

4.4.1.1 Streaming messaging

In server-side streaming, the client sends a request to the server and gets a stream to read a sequence
of messages back. The client reads from the returned stream until there are no more messages. This
pattern is actually used withing DYNAMOS for a application to receive RabbitM(Q message from its
sidecar.

In client-side streaming, the client writes a sequence of messages and sends them to the server, again
using a provided stream. Once the client has finished writing the messages, it waits for the server to read
them all and return its response. There’s also bidirectional streaming where both sides send messages
using a read-write stream. Streaming RPCs are more efficient for large datasets because they break the
data up into multiple smaller messages. This however has not been tested yet with regards to passing
on SQL data.

4.4.2 Microservice chain libraries

To interface with this gRPC flow, a small library would need to be written for each language that is
used in the data exchange microservices. DYNAMOS has a library in Go and in Python, the one in Go
is more developed at this moment. This library should do the following:

e Create gRPC connections based on the information given in listing 4.4

o Start a gRPC server to receive messages from the previous link in the chain
e Exit the service gracefully after certain conditions are met

e Send messages to the next link in the microservice chain or the sidecar

Listing 4.5 shows in pseudocode how that would look.

func main() {
// Initialize some logger package that writes to STDOUT
logger = 1lib.InitLogger ()

// Sets up the microservice so that it knows how to receive and send
messages
configuration = 1lib.InitMicroservice ()

// Start consuming messages
lib.startConsume (configuration, messageHandler)

}

func messageHandler (ctx context.Context, grpcMsg *pb.
MicroserviceCommunication) {
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switch grpcMsg.Type {

case "gemneric":

// Handle generic requests

case "sqlDataRequest":

// Handle sqlDataRequest

Listing 4.5: Template microservices need to implement

4.4.3 Detailed ephemeral job examples

In the previous sections, we discussed how ephemeral jobs are created and how the data flows through
the services. In this section, we go through a step-by-step sample of the actions an agent takes for each
archetype.

As long as the data analyst has valid access tokens the same job can be executed indefinitely. For
each new job, a new microservice chain will be generated and deployed, which will re-use the created
input queue for that job. After a time-out of disuse, the queue will also be deleted.

4.4.3.1 ComputeToData scenario

In this scenario, the data steward handles every part of the microservice chain. Figure 4.4 shows num-
bered events and colored arrows of messages arriving at the agent, the numbers correlate to the following

steps:
/Dala steward \

Job

Service 1 Service 2

Data’ Data’

|
|
|
Service 3 |
|
|

3: Results

=)

1: Composition request

\

2: Data requeit/

Figure 4.4: Compute to data, agent actions

1: composition request received, the role for this job is ‘all’.

e Generate a unique name based on the given job name

e Register composition request for later use

e Create a queue with that unique name, as input for the jobs
e Wait for incoming HTTP data requests from the data analyst

2: Data request received.

e Look up the matching job for this user

e Generate and deploy microservice chain, possibly including optional services from the HTTP re-
quest

e Put the request into the queue for this job

3: Results received.

e Return results to the data analyst
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4.4.3.2 DataThroughTtp

In this scenario, the trusted third party receives the data request and forwards this to the related data
stewards. The colours in figure 4.5 show based on what request the job is created. The below tables

show which actions each agent takes on receiving a request.

/Data steward \ ﬁusled third party

Service 2 Service 3

Service 2 Service 3

1: Composition request

2: Data reque/

1: Composition request

Figure 4.5: Data through TTP, agent actions

Data steward Third party
(DataProvider) (ComputeProvider)

1: Composition request

Generate a unique name based on the given job name
Register composition request for later use

Create a queue with that unique name, as input for the jobs
Wait for incoming HTTP data requests from the data analyst
Wait for incoming requests from third party

X
X

Hop< R

Data steward Third party
(DataProvider) (ComputeProvider)

2: Data Request

Generate and deploy microservice chain,

including optional services from the HTTP request X
Forward request to other data stewards

Wait for results

Put the request into the queue for this job X

>

Data steward

Third party

(DataProvider) (ComputeProvider)

3: Results

Send result to ComputeProvider X
Put the request into the queue for this job

After processing, return results to data analyst
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4.5 Dynamic Archetypes

In Chapter 3.6, we discussed three examples of when an archetype could change.

e The agreement has been changed, a different archetype is allowed by the policy enforcer
e A flag has been added to the data request to force data aggregation in an ‘aggregate’ service
e One of the systems is under a high load, offload data processing to other parties

In this section, we first have a look at how an agreement is processed in DYNAMOS to come to a
valid archetype. Then we discuss how each change event can be handled, and show an implementation

of the first.

4.5.1 Processing Policy

As discussed in Chapter 2.4, for DYNAMOS we have stubbed a ‘policy enforcer’. Listing 4.6 how this
is configured. There are three universities, of which two have an agreement with a data analyst. Each

university lists:

e Its name
e The compute providers (third parties) it trusts
e The data-sharing archetypes it allows relations to work with
e Each relations with this university show:
— Name
— ID
— The request types allowed for this user
— The datasets allowed for this user
— Archetypes allowed for this user
— Compute providers (third parties), trusted by this user
[
{
” name77 : 77VU77 s
7relations”: {
7jorrit .stutterheim@cloudnation.nl” : {
” ID” : 77GUID77 ,
"requestTypes” : [”sqlDataRequest”],
”dataSets” : [”wageGap”],
7allowedArchetypes” : [”dataThroughTtp”, ”computeToData”],
”allowedComputeProviders” : [”SURF”]
}
}’
?computeProviders” : ["SURF”, ”otherCompany”],
”?archetypes” : [”computeToData”, "dataThroughTtp”, ”reproducableScience”]
I
{
?name” : "UVA” |
?relations”: {
Vjorrit .stutterheim@cloudnation.nl” : {
”» ID” . 77GUID77 ,
"requestTypes” : [”sqlDataRequest”],
”dataSets” : [”wageGap”],
7allowedArchetypes” : [”dataThroughTtp”],
”allowedComputeProviders” : [”SURF”]
}
}’
?computeProviders” : ["SURF”, ”otherCompany”],
”?archetypes” : [”computeToData” , ”dataThroughTtp”, ”reproducableScience”]
} K
{
”name” : "RUG” ,
?relations”: {
}
}

Listing 4.6: Agreement config
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When a data analyst requests approval, the policy enforcer checks which universities the data analyst
has agreements with. And returns all valid data providers, with a list of valid archetypes and trusted
third parties.

The orchestrator then checks which distributed agents are actually online, to make a final choice of
archetype and trusted third party. At this moment, the orchestrator will simply pick the first matching
archetype, and the trusted third party matched in all the agreements. In listing 4.6 this would mean it
picks ‘dataThroughTtp’ with ‘Surf’ as compute provider.

In future iterations of DYNAMOS, this would be improved with the archetype selection algorithms
discussed in Chapter 3.6. Furthermore, it would also allow different archetypes on different data stewards,
in the above example it could be fine to have the VU operate as computeToData and the UVA as
dataThroughTtp and if the data doesn’t need to aggregate, different third parties could be used as well.

4.5.2 Evolving Agreement

Agreements can be changed through the API (4.9). The workflow that is triggered, checks if ‘relations’
in the changed agreement have active jobs. Active jobs are stored in etcd as a compositionRequest:

// Key: /agents/jobs/SURF/jorrit.stutterheim@cloudnation.nl/jorrit—stutterheim —43ea82da

”archetype_-id”: ”dataThroughTtp”,
"request_type”: "sqlDataRequest” ,
”role”: ”"computeProvider” ,
"user”: {
77id77: ?712324?7’
?user_name”: ”jorrit.stutterheim@cloudnation.nl”
}7
”"data_providers”: |
77UVA’7
I,

?destination_queue” : "SURF—in” |
”job_name”: ”jorrit —stutterheim —43ea82da” ,
”local_job_name”: ”jorrit —stutterheim —43ea82dasurfl”

If there are active jobs for a user in the changed agreement, an algorithm starts to determine if the
current archetype is still allowed, and the best choice. If the archetype changes, the fields ‘archetype_id’
and ‘role’ from listing 4.5.2 will be adjusted to reflect the new archetype. Schematically this process is
shown in figure 4.6.

0' Return new valid agreement information
etcd
message PolicyUpdate {

string type
A A User user
Update repeated string data_providers
Check for active job RequestMetadata request_metadata
active jobs information ValidationResponse validation_response
@ ® )
\ 4
GO :
Orchestrator Policy enforcer

®

There are active jobs in'this agreement
Agreement changed message PolicyUpdate {
1 string type
User user
repeated string data_providers
RequestMetadata request_metadata
ValidationResponse validation_response

}

Figure 4.6: Workflow on policy change
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4.5.3 Aggregate flag

As mentioned in Chapter 3.6, allowing an aggregate flag is not trivial in the current implementation
of DYNAMOS. This is due to the fact that at this moment the URL is different per archetype. If the
computeToData archetype is active, the user is required to send a request to each data steward. If the
dataThroughTtp archetype is active, the request should be sent to the trusted third party.

For the previous use case, this architecture could still be workable as long as DYNAMOS can stream
events to active users, and the frontend client can pick the appropriate backend targets based on these
events. However, in this case, where the user actually forces an archetype change, a different approach
is required.

An obvious solution is introducing an API gateway, which could be off-the-shelf or custom, depending
on the exact requirements. In this architecture, our ingress NGINX, would be configured to forward all
traffic to this gateway service and be used only for SSL termination, rate limiting, and other function-
alities it excels at.

Depending on the requirements, the gateway can, aggregate responses, modify requests or responses,
handle authentication, and dynamically choose backends. Or in this case, ensure the archetype is checked,
modified, and the request is routed correctly.

In this thesis, we don’t provide a full design of this gateway, but accept that this would be required
for future implementations of DYNAMOS. Even if user-inspired archetype changes will not be allowed,
an API gateway still provides a lot of useful features that can be exploited.

4.5.4 System load

We assume that the distributed agent can query the local data steward environment for metrics. The
data steward should configure the agent with a threshold, saying that if CPU and memory are above a
certain percentage, compute operation need to be offloaded. The agent stores this threshold and metrics
in etcd, the orchestrator sets watches on all the metrics to take action when a threshold is passed!®.

As the selection algorithm in Chapter 3.6 describes, new jobs will now choose archetypes that have
the least impact on that agent. However, as described in the previous section and similar to the flow in
figure 4.6, the orchestrator could also start adjusting active jobs.

The main takeaway here should be that DYNAMOS can change both new and active jobs, and thus
act on metrics to change a server load by adhering to different archetypes. This type of load balancing
on metrics, however, is quite complex and can be a study in itself. Questions raised for example when
thinking about this are:

e How many active jobs should be changed, and for how long?

e Are there too many users, or are there a few users with very heavy jobs?

e If the policy does not allow new users to switch archetypes, do we start rate limiting or something
else?

e What do we do if the third party is overloaded as well?

In this thesis, we don’t intend to solve this problem but show the capabilities of how DYNAMOS
could be extended to implement these algorithms.

4.6 Messaging

As discussed in chapter 3.3, DYNAMOS abstracts away its messaging infrastructure through the use of
a sidecar and gRPC. The messages and functions to be used by gRPC are defined in ‘.proto’ files. Exact
message definitions can be found in the GitHub repository or in appendix C.2. Two generic message
definitions stand out and need some extra context, namely ‘SideCarMessage’ and ‘MicroserviceCommu-
nication’.

1In practice, it would be advised to create a separate service, orchestrator-metrics, for example, to manage this specific
task
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4.6.1 Generic messages
4.6.1.1 Sidecar message

The sidecar of each DYNAMOS component has a constant connection with the ‘main’ container to
stream incoming messages from the messaging system into the container. The SideCarMessage is the
standard message type that is used throughout DYNAMOS to communicate down that stream. The
type of the SideCarMessage body is ‘google.protobuf.Any’. An ‘Any’ type can hold any valid protocol
message, the advantage being that no separate function definitions need to be made for each message
that streams for the sidecar into the system. Listing 4.7 illustrates this.

}

s|message SideCarMessage {

//Current implementation
service Sidecar {
rpc Consume (ConsumeRequest) returns (stream SideCarMessage) {}

string type = 1;
google .protobuf.Any body = 2;
map<string, bytes> traces = 3;

}

3| // Sidecar packs an incoming message:

func (s *server) SendRequestApproval (ctx context.Context, in *pb.
RequestApproval) (*emptypb.Empty, error) {
message := amqp.Publishing{
Body: proto.Marshal(in),
Type: "requestApproval",

stream.send (message)

5| // Main container unpacks this message:

5| func handleIncomingMessages (ctx context.Context, grpcMsg *pb.SideCarMessage)

error {
switch grpcMsg.Type {
case "requestApproval":
var requestApproval pb.RequestApproval
grpcMsg.Body.UnmarshalTo (&requestApproval)
// Handle requestApproval message

}

// If ‘Any’ was not used like this then:

;| // Separate streaming functions for each message type would need to be

implemented
service Sidecar {
rpc ConsumeValidation(ConsumeRequest) returns (stream ValidationMessage) {}
rpc ConsumeRequestApproval (ConsumeRequest) returns (stream RequestApproval)

{3

Listing 4.7: Streaming side car messages

4.6.1.2 Microservice communication

A second often-used message is ‘microServiceCommunication’. Since all microservices in a microservice
chain communicate data through the use of gRPC, a default message that is passed to, through, and
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from the chain makes this a uniform message flow. The data field is of type ‘google.protobuf.Struct’ this
is basically a flexible map where the keys are strings and the values can be of any type, in a way this
mimics a JSON-like data structure. Furthermore, it can contain metadata about the data, the original
users’ request, and routing data.

service Microservice {
rpc SendData(MicroserviceCommunication) returns (google.protobuf.Empty) {}
rpc SendMicroserviceComm(MicroserviceCommunication) returns (google.protobuf
.Empty) {}
}

message MicroserviceCommunication {
string type = 1;

string request_type = 2;

google.protobuf.Struct data = 3;

map<string, string> metadata = 4;

google.protobuf.Any original_request = 5;

RequestMetada request_metada = 6;

map<string, bytes> traces = 7;

bytes result = 8;

repeated string routing_data = 9; // To be used for persistent jobs

Listing 4.8: Microservice Communication messages

4.7 'Transferring generic data

In the previous section, we highlighted that DYNAMOS messages utilize google.protobuf.Struct within
the microServiceCommunication message to transfer data. An alternate method could involve encoding
this data into other structured formats such as JSON. This section delves into the advantages and
disadvantages of both methods, providing insights into how subsequent microservices can process data.
This challenge, however, is not the main focus of this thesis, so apart from generic observations it will
not delve into too much detail.
The benefits and limitations of the Struct type are as follows:
Advantages

e Items retains type information

e Efficient marshalling and unmarshalling operations
Disadvantages

e Due to type information retention the messages increase in size

e I requires custom logic to pack a message and retain its type information as close as possible

On the other hand, using JSON offers the following:
Advantages
e Universal and familiar, making it easier to integrate and work within various platforms.
e Typically results in smaller message sizes, especially when representing complex data structures,
leading to potentially faster transmissions.
Disadvantages
e Offers less precision in type information retention, which may require additional validation or
interpretation logic

Both methods would work in the current DYNAMOS implementation. More research focusing on this
specific issue would be needed to make a definitive decision on ways to transfer generic SQL data, this
would heavily influence how data-sharing microservices are designed. We stuck with the Struct message
type for its type safety properties. In the next paragraphs, we will quickly show why message sizes differ
between JSON and Struct, and how processing would work.

4.7.0.1 Message size

Listing 4.9 showcases the reason for the size difference.
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// A single field of the queried data is represented on the ‘google.protobuf.
Struct’ 1like this:
"Aadnstvb": {
"listValue": {

"values": [
{
"stringValue": "V"
}
]

// In JSON this can be represented like this:
"Aadnstvb": ["V"]

Listing 4.9: Struct vs. JSON encoding

4.7.0.2 Processing

The code in listing 4.10 illustrates the process of extracting string values from two distinct data formats:
a Protocol Buffers Struct and a JSON string. The example mainly shows that passing data as JSON
would involve a lot more type checking and error handling.

func convertAllDataFromStruct (data *structpb.Struct) {

//=-==== Struct:

// Initialize variables to store keys, values and maximum length
keys := make([]string, 0)

allValues := make ([]J[]string, 0)

maxLength := 0

// Loop over fields in the structpb
for key, value := range data.GetFields() {
stringValues := value.GetListValue().GetValues ()
// Check if there are any values to process
if len(stringValues) > 0 {
keys = append(keys, key)

rowValues := make([]string, len(stringValues))
// Extract string values
for i, v := range stringValues {

rowValues[i] = v.GetStringValue ()
}
allValues = append(allValues, rowValues)
// Update maxLength if current row is longer
if len(rowValues) > maxLength {
maxLength = len(rowValues)

}

}

func convertAllDataFromJSON (data []lbyte) {

//=-==== JSON

// Unmarshall JSON:

jsonData := make(map[string]interface{})

jlerr := json.Unmarshal(data, &jsonData)

if err != nil {
fmt.Printf ("Error while unmarshalling JSON: %v\n", err)
return

}
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2| // Initialize variables

keys := make([]lstring, O0)
allValues := make ([]J[]string, 0)
s|maxLength := 0

// Loop over key-value pairs in the JSON data

;| for key, rawValue := range jsonData {

values, ok := rawValue.([]interfaced{})
if lok {
fmt.Printf ("Expected a list for key %s but got a different type\n", key
)
continue
}
if len(values) > 0 {
keys = append(keys, key)
rowValues := make([]string, len(values))
for i, v := range values {
// Convert the interface value to string
strValue, ok := v.(string)
if tok {
fmt.Printf ("Expected a string value in list for key %s but got
a different typeln", key)
continue
}
rowValues [i] = strValue
}
allValues = append(allValues, rowValues)
if len(rowValues) > maxLength {
maxLength = len(rowValues)

}

Listing 4.10: Struct vs. JSON unpacking

4.8 Distributed tracing

As discussed in chapter 2.5.3.2, distributing tracing is extremely important for debugging a distributed
application. Furthermore, it is used to get exact figures on how long transferring data takes within
DYNAMOS. However, it is also complex and requires the application code to properly initiate, propagate
and handle trace context. To try and approach tracing more as an ‘out-of-the-box’ feature, DYNAMOS
leverages the Linkerd (service mesh) Jaeger extension. This extension adds the following three services
to the cluster.

e cr.l5d.io/linkerd/jaeger-webhook — Webhook for auto-forwarding Linkerd tracers

e otel/opentelemetry-collector — OpenTelemetry collect for collecting, processing, and forwarding
trace data

e jaegertracing/all-in-one — Jaeger tracing backend and front-end UI

With these services running, applications can be instrumented as shown in listing 4.11, to do this
properly already can be a time-consuming task. However, instrumenting microservices of an ephemeral
job revealed additional challenges.

4.8.1 Conflicting libraries

Linkerd, recommends the use of the ‘OpenCensus’ tracing library [42]. In the future, however, this
library is deprecated in favor of the ‘OpenTelemetry’ library. In DYNAMOS Go services this is no issue,
OpenCensus works fine and traces are propagated in a binary format. In our Python microservices the
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OpenCensus library does not seem to work. Pythons’ OpenTelemetry library works, but can’t decode
the binary propagation format being used in DYNAMOS. So, DYNAMOS was adapted to also propagate
text-based trace information, which the Python services can use to manually construct new traces.

4.8.2 Timing issues

In tracing, if an application exits before all spans are forwarded to the trace collector, some tracing infor-
mation might be lost. The microservice chains are designed to exit after completing message processing.
And are susceptible to exiting before properly emitting traces. Thus, the microservice chain libraries
are/need to be designed to exit gracefully.

func main () {
// Initialize a tracer instance

_, err := lib.InitTracer(serviceName)
if err != nil {
logger .Sugar () .Fatalf ("Failed to create ocagent-exporter: %v", err)

}

// Start a span for this function

func requestApprovalHandler (c pb.SideCarClient) http.HandlerFunc {
ctx, span := trace.StartSpan(ctx, "requestApprovalHandler")
// Defer will close the span on function exit
defer span.End()

// pass the context to the next function to create a ’child span’ of the
current span

otherfunction(ctx)

// Do work

return

}
func otherfunction(ctx) {
ctx, span := trace.StartSpan(ctx, "otherfunction")

defer span.End()

return

Listing 4.11: DYNAMOS tracing example

4.9 API

Both the orchestrator and the distributed agents expose an API endpoint. Apart from the two main
methods needed to get approval and perform a data request, every etcd static configuration resource can
be dynamically updated. The body for each request can be found in the protocol buffer files, or in the
eted configuration files.
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Method Target Path Info

POST orchestrator /api/vl/requestapproval Get data request approval
POST agent Jagent/vl/sqlDataRequest/ < agentname > Send data request

GET orchestrator  /api/vl/archetypes Get all archetypes

GET orchestrator  /api/vl/archetypes/ < archetype name > Get specific archetype

PUT orchestrator  /api/vl/archetypes Add new/update archetypes
GET orchestrator  /api/vl/policyEnforcer Get all agreements

GET orchestrator  /api/vl/policyEnforcer/ < data steward name > Get specific agreement

PUT orchestrator  /api/vl/policyEnforcer Add new/update agreements
GET orchestrator /api/vl/requestTypes Get all request types

GET orchestrator /api/vl/requestTypes/ < requestType name > Get specific request type

PUT orchestrator /api/vl/requestTypes Add new/update request types
GET orchestrator  /api/vl/microservices Get all microservices

GET orchestrator /api/vl/microservices/ < microservice name > Get specific microservice

pPUT orchestrator /api/vl/microservices Add new/update microservices
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Chapter 5

Experiment design

In this section, we evaluate the performance and bottlenecks of DYNAMOS. We want to get a feel for
data transfer speeds between microservices. Then we look at the bottleneck of dynamically creating jobs
on user request arrival.

5.1 Experiment setup

5.1.1 Hardware

All experiments are run on a personal MacBook Pro, CPU: 2,6 GHz 6-Core Intel Core i7, Memory: 16
GB 2667 MHz DDR4. Kubernetes runs on ‘Docker Desktop’, and is given 6 CPU cores, 10GB of memory,
and 2GB of swap memory.

5.1.2 Subject

For the experiment, we use two microservices, namely a ‘query’ service and an ‘algorithm’ service. The
query service is written in Python, it will do a database query on 2 CSV files, transform the data to a
protobuf readable format, and forward it to the next service. The two CSV files contain synthetic salary
information about university personnel. However, to have very specific control over the size of the data
queried a simple join will be done without an ‘ON’ clause. This will result in the Cartesian product of
the two tables, with the ‘LIMIT’ clause to cap the data to a certain size.

SELECT * FROM Personen p JOIN Aanstellingen s LIMIT 10000

The algorithm service, written in Go, will transform the data back to a list of comma-separated rows,
basically the text output of the SQL query. Only the first two rows are returned, however. This is to
shorten the HT'TP transfer time and simulate a more realistic outcome of a data request, where only a
specific result would be returned. Both the computeToData, and dataThroughtTtp archetypes will be
tested.

5.1.3 Trace measuring points

Figures 5.1 and 5.2, show full traces of a SQL query of 30000 rows, through both the computeToData
and dataThroughTtp archetypes. In the traces, we identified three measuring points (MP) for the
computeToData archetype, and six MP for the dataThroughTtp archetype. Each MP constitutes a type
of data transfer, starting from the query service. The MP is either:

e A transfer from a data-sharing microservice to another microservice
e From a data-sharing microservice to a sidecar

e From the sidecar to the agent or a data-sharing microservice

e Agent to agent

Tables 5.1 and 5.2 show where the transfer happens, what communication methods are used, and
which points in the trace are used for that MP.

Measuring transfer speeds in these traces is not completely straightforward, however. As seen in the
‘query SendData’ entry in figure 5.1, the trace is as long as the entire handling of the next microservice.
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This is because the ‘SendData’ function is executed on the container of the next service but then handles
the entire message flow before returning an answer to the gRPC method. In other words, the moment the
‘SendData’ function starts execution is the moment all data has been transferred to the next service and
is the point that needs to be measured. See listing 5.1 on how this approximately works in pseudocode.

Archetype Calculation

Compute to Data StartOf(endpoint) - StartOf(starting point)

Ref | Transfer Method Starting point Endpoint

MP1 | Query — Algorithm gRPC query algorithmService sidecar
/proto.Microservice/SendData | SendData/func:

MP2 | Algorithm — Sidecar | gRPC sidecar sidecar SendData/func:
/proto.Microservice/SendData

MP3 | Sidecar — UVA gRPC + sidecar Send- | UVA/func: handleIncom-
DataThroughAMQ/func ingMessages

RabbitMQ

Table 5.1: Compute to data measuring points

Archetype Calculation
Data through ttp StartOf(endpoint) - StartOf(starting point)
Ref | Transfer Method Starting point Endpoint
MP4 | Query — Sidecar gRPC query sidecar SendData/func:
/proto.Microservice/SendData
MP5 | Sidecar — UVA gRPC + sidecar SendData/func: UVA /func: handleIncom-
ingMessages
RabbitMQ
MP6 | UVA — SURF RabbitMQ | (UVA) proto.Sidecar. SURF/func:  handleIncom-
ingMessages
SendMicroservice
Communication®
MP7 | SURF — Sidecar gRPC (SURF) proto.Sidecar.
SendMicroservice
Communication?
MPS8 | Algorithm — Sidecar | gRPC sidecar sidecar SendData/func:
/proto.Microservice/SendData
MP9 | Sidecar -+ SURF gRPC + sidecar Send- | SURF/func:  handleIncom-
DataThroughAMQ/func ingMessages
RabbitMQ

Table 5.2: Data through ttp measuring points

func (s xSharedServer) SendData(ctx context.Context, data *pb.MicroserviceCommunication)
(*emptypb.Empty, error) {
// Enter function, now all the data is available in the next microservice, at the xpb.
MicroserviceCommunication pointer.
// So start a manual trace
startManualTrace (ctx ,data)

// Execute whatever this container needs to do:
handleDataRequest (ctx, data)

// Return after executing, thus closing the sendData span
return &emptypb.Empty{}, nil

Listing 5.1: Usage SendData explained

1Measure times between the end of the first and the start of the second function
2length of this function can be taken as is
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Trace Start July 29 2023, 15:24:42.744 Duration 5.54s Services 4 Depth 11 Total Spans 22

Ops 1.39s 2.77s 4.168 5.54s
ey————
Service & Operation v >Y¥»  Ops 1.39s 2.77s 4.16s 5.54s
v | UVA /agentivi/sqiDataRequest/uva |
~ | UVA UvA/func: sqiDataRequestHandler
v | UVA uvasune: handleSglAll 34.09ms
v UVA UVvAffunc: generateChainAndDeploy 24.23ms
v | UVA proto.SideCarSendMicroserviceComm | s87ps
v | sidecar proto.SideCar.SendMicroserviceComm 1 10dps
v | query process_sql_data_request 2858
Query load_and_query_csv 882.83ms
query dataframe_to_protobuf 1.16s
v | query Sendbata 804.66ms
query /proto.Microservice/SendData 752.82ms

| algorithmService sidecar SendDatasfunc:

~ | algorithmService aigorithmSenicafunc: sendDatatandier, process grp...

v | algori ice handleSqDataReq
v | algorithmService convertAiData

« | algorithmSenvice preta ersensa sendot

| sidecar proto.Microservice. SendData
v | sidecar sidecar senaDatestunc:
| sidecar sidecar SendDataThroughAMQ/func:

v | UVA uvasfunc: ommuni.

UVA isJobWaiting

UVA isHttpWaiting

Figure 5.1: Trace of a 30000 line SQL request,
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Trace Start July 29 2023, 15:28:18.673 Duration 7.74s Services 5 Depth 22 Total Spans 38

ops 1.94s

3.87s

5.815

Service & Operation
v | SURF sagent1/sqiDataRequestisurt
~ | SURF suRFfiunc: salbataRequestHandler
vI SURF  SURF/func: handleSqiComputeProvider
v | SURF proto sideCarSendsqDataRequest
vI sidecar proto.SideCarSendSqlDataRequest
v | UVA uva/func: handleincomingMessages/sqDataRequest
UVA UVA/func: generateChainAndDeploy
~ | UVA proto.SideCar SendMicroserviceComm
v | sidecar proto.SideCarSendMicroserviceComm
v | query process sql_data request
query load_and_query_csv
query dataframe_to_protobuf
| query SendData
query /protoMicroservice/SendData
> | sidecar sidecar sendDatasiunc:

v | UVA uvasune:

UVA isJobWaiting
UVA isHttpWaiting
~  UVA isThirdPartyWaiting
v | UVA proto.SideCarSendMicroserviceComm
vI sidecar proto.SideCar.SendMicroserviceComm

| SURF surerune:

vI SURF isJobwaiting
~ | SURF surFsunc: handieFurtherProcessin
9

v | SURF  proto.SideCarSendMicroserviceGomm

v ice prot:

vI sidecar proto.SideCarSendMicroserviceComm
v | algorithmService algorithmService/func: messageHandler, process MS
~ I algorithmService handiesqiDataRequest

« | algorithmService convertaiData

| sidecar sidecar SendData/func:

v | SURF sursfiunc:

I sidecar proto Microservice.SendData

| sidecar sidecar SendDataThroughAMQ/func:
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|| 200ps
36.79ms
22.66ms

| 810ps

| 158ps

| SURF isiobwaiting
| SURF iskttpwaiting

Figure 5.2
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5.2 Experiment description

5.2.1 Experiment 1

The goal of this experiment is to get numbers on data transfer speeds and the size of data in different
formats. The distributed traces of each ‘sqlDataRequest’ have been enhanced to record the following
attributes of the complete message after processing:

e Size of the message in bytes as currently formatted (gRPC proto-wire format)
e Size of the message in bytes serialized to JSON

The queries will be done in three sizes 10000, 20000, and 30000 respectively. Five queries will be
done for each size, with some spacing in between to make sure the system is always at rest. Afterward,
the traces can be analyzed to get average transfer times and message sizes.

5.2.2 Experiment 2

For this experiment, a new set of traces will be created and analyzed to get more insights into the major
bottlenecks of the system. The following measures are taken for experiment two.

e Startup time — Start of the ‘query’ service - the start time of ‘SendMicroserviceCommunicatoin’

e Total processing time — all processing functions in the query and algorithm services, excluding
transfer times

e Transfer time — TransferTime = Latency — (StartupTime + Total ProcessingTime)

5.2.3 Comparison proof of concept

For a comparison, Figure 5.3, shows the trace, another proof-of-concept implementation, made at the
University of Amsterdam by Marten Steketee [36]. The architecture of this application is very different,
it is a monolithic application, so changes to services need to be programmed in, and it only allows a
single database scheme at the moment. Furthermore, the processing is also more optimal due to the use
of an effective SQL database.

Due to the monolithic nature, and lack of a sidecar, there are fewer data transfers happening. The
only data transfer between services in the trace is directly from one data provider to the trusted third
party. This transfer is done through RabbitM@), in the message the data is encoded as a string, which
makes the size larger than DYNAMOS transfers.

In this implementation, the message consists of 4141 lines and is around 8 MB. Two transfers happen,
the first from the data provider to the third party by RabbitMQ, which costs 916ms. The second from
the third party to the user, 540ms, for a total of 1.46 seconds. The total latency is 2.4 seconds, making
data transfers to be approximately 60% of the processing time.
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Trace Start August 3 2023, 16:12:59.499 Duration 2.48 Services4 Depth 22 Total Spans 48

O 601.07ms 125 18s 2.45
e
e ——————
Service & Operation ¥ » Ops 601.07ms 1.2s 1.8s 2.4s
> UNL-UvA store data request 18.12ms
UNL-UvVA get_data_request_from_database 18.05ms
~  UNL-UvA send_guery 24.21ms
> UNL-vu process message 9.4ms
> I UNL-surf process message 1 7.92ms
~ | UNL-Orchestrator process message 1 7.85ms
W I UNL-Orchestrator nandie_message 1 7.81ms
~ | UNL-Orchestrator send message 16.89ms
v | UNL-vu process_message 8.16ms
~ | UNL-vu handis_request_approval 8.11ms
~ I UNL-Orchestrator process message @ 26.66ms
v I UNL-Orchestrator nandie_message @ 26.52ms
v I UNL-Orchestrator handie_approve @ 26.47ms
w I UNL-Orchestrator send message 1 9.63ms
~ | UNL-VU process_message 298.44ms
~ | UNL-VU handle_ready_to_send 298.28ms
v | UNL-Orchestrator process message 1 1505
I UNL-Orchestrator handie_message 1 13ps
> | UNL-surf process message 210.9ms N
| UNL-Orchestrator nandie status # 14.58ms
I UNL-Orchestrator send_message # 13.35ms
UNL-UvA get_data_request_from_database 7.81ms
>  UNL-UvA status update 5.9ms

UNL-UVA get_data_request_from_database
UNL-UVA receive_data

Figure 5.3: Trace of 4141 line SQL request, compute to data archetype, different program
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Chapter 6

Results

6.1 Experiment 1

Tables 6.1, 6.3, 6.2, 6.4 show the results and statistics from the first experiment.

6.1.1 Message sizes

Limit proto-wire format JSON encoded On disk Avg. gRPC Transfer speed

(in bytes) (in bytes) (in bytes) transfer speed MB/s
10000  1.344.899 1.180.220 983.455 102ms 13,25
20000  2.693.365 2.364.465 2.463.677  200ms 13,43
30000  4.036.759 3.542.934 2.955.314  296ms 13,63

Table 6.1: Message sizes in bytes

As discussed in chapter 4.6, the message size of a proto-wire encoded message is larger than its JSON-
encoded equivalent.

6.1.2 Data transfer speeds

For the largest (4MB) message the gRPC data transfer averages out to around 296 ms, not very different
from the average 311 ms RabbitMQ transfer speed. Consequently, the average transfer speed is around
13.6 MB/s. Which is more than the 8.7 MB/s transfer speed of the other implementation discussed in
subsection 5.2.3. However, since the encoding is completely different, and it was tested on other systems
this result by itself does not mean anything.
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6.1.2.1 Data transfer computeToData

Limit Latency MP1 MP2 MP3
gRPC gRPC gRPC +

RabbitMQ
10000  3.31s 115 99 157
10000 3.43s 96 110 160
10000  3.31s 112 98 144
10000  3.51s 97 108 199
10000  4.12s 113 119 175
20000  4.3s 186 205 347
20000  4.74s 167 256 326
20000  5.08s 340 342 339
20000  4.85s 181 239 349
20000  4.69s 191 281 339
30000  6.47s 318 676 707
30000  6.01s 253 658 500
30000  6.01s 250 498 586
30000  5.59s 269 669 621
30000  5.89s 232 315 476

Table 6.2: Data transfer times computeToData archetype, measurements in milliseconds,
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6.1.2.2 Data transfer dataThroughTtp

Limit Latency MP4 MP5 MP6 MP7 MP8 MP9
gRPC  gRPC +  RabbitMQ gRPC gRPC gRPC +

RabbitMQ RabbitMQ

10000 4.49s 84 150 98 98 124 130

10000 4.41s 84 163 128 96 97 137

10000 4.9s 100 175 139 95 88 117

10000 4.58s 87 152 131 111 108 124

10000  4.5s 92 150 118 97 101 126

20000  5.45s 191 323 296 273 205 264

20000  6.77s 227 300 284 211 181 259

20000  6.09s 155 291 258 211 173 239

20000  5.95s 157 281 226 190 190 226

20000  6.01s 165 312 251 202 185 232

30000  7.82s 247 424 337 320 312 396

30000  8.08s 370 460 307 278 266 357

30000  8.06s 401 475 306 287 263 351

30000  8.22s 253 468 318 300 431 391

30000  8.01s 240 486 288 283 278 364

Table 6.3: Data transfer times for dataThroughTtp archetype, measurement in millisec-
onds,
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6.1.2.3 Data transfer statistics

Measuring points Avg Min Max Stdev
MP1, measuring gRPC transfers

10000 107 96 115 9
20000 213 167 340 72
30000 248 219 267 20

MP2, MP4, MP8, measuring gRPC transfers

10000 101 84 124 13
20000 191 155 250 25
30000 312 240 464 70

MP3, MP5, MP9, measuring gRPC + RabbitMQ

10000 151 117 199 22
20000 295 226 349 43
30000 471 351 707 102

MP6, measuring RabbitM(Q message transfer

10000 123 98 139 16
20000 263 226 296 28
30000 311 288 337 18

MP7, measuring gRPC transfers

10000 99 99 99 99
20000 217 190 273 32
30000 295 278 320 18

Table 6.4: Statistics data transfer times, in milliseconds
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6.2 Experiment 2

Table 6.6 and 6.7 show latency, startup time, total processing time, and transfer times all derived from
the distributed traces. Table 6.5 shows some basic statistics on those data points.

From these results, two main bottlenecks can be observed. Namely, ephemeral job startup time and
data transfer time. For the ephemeral job startup time, we discuss alternative architectures and decisions
that can be taken to minimize this, in the chapter 7. Processing time could most likely be improved a
bit as well, but that is ignored for now since that is mainly an engineering issue.

6.2.1 Bottleneck analysis statistics

| Average MIN MAX STD

StartupTime: 1,70 1,53 2,42 0,21
Processing Time:

10000 1,21 1,08 1,40 0,11
20000 1,90 1,61 2,43 0,26
30000 2,42 2,18 2,85 0,20
ComputToData

TransferTime:

10000 0,53 0,47 1,33 0,31
20000 1,00 0,88 1,14 0,11
30000 1,24 1,17 1,33 0,06
DataThroughTtp

TransfertIme:

10000 1,45 1,28 1,58 0,14
20000 2,66 2,46 2,85 0,17
30000 3,92 3,65 4,18 0,21

Table 6.5: Bottleneck analysis statistics
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6.2.2 Bottleneck analysis computeToData
Limit Latency Startup Total Transfer Startup Processing Transfer Transfer
Time Processing Times % Time % Time % Time %
Time Excl. Startup
10000 3,22 1,55 1,15 0,52 48,23% 35,71% 16,06% 31,01%
10000 3,41 1,55 1,36 0,50 4551%  39,88% 14,60% 26,80%
10000 3,17 1,57 1,14 0,47 49,50% 35,84% 14,67% 29,04%
10000 4,14 2,11 1,40 0,64 50,97% 33,70% 15,34% 31,28%
10000 3,73 1,97 1,22 0,54 52,73% 32,71% 14,56% 30,80%
20000 4,31 1,58 1,83 0,90 36,68% 42,41% 20,90% 33,02%
20000 5,63 2,16 2,43 1,05 38,37% 43,07% 18,56% 30,12%
20000 4,47 1,61 1,84 1,02 36,04% 41,19% 22,77% 35,61%
20000 4,42 1,60 1,95 0,88 36,11%  44,05% 19,84% 31,06%
20000 5,11 1,69 2,28 1,14 33,15% 44,56% 22,29% 33,34%
30000 5,24 1,54 2,37 1,33 29,41% 45,17% 25,42% 36,01%
30000 5,76 1,65 2,85 1,27 28,56% 49,45% 21,99% 30,78%
30000 5,34 1,70 2,42 1,22 31,84% 45,37% 22,79% 33,43%
30000 5,2 1,62 2,41 1,17 31,23% 46,31% 22,46% 32,66%
30000 5,41 1,57 2,62 1,22 28,96% 48,43% 22,61% 31,82%
Table 6.6: Bottleneck analysis, computeToData archetype
6.2.3 Bottleneck analysis dataThroughTtp
Limit Latency Startup Total Transfer Startup Processing Transfer Transfer
Time Processing Times % Time % Time % Time %
Time Excl. Startup
10000 4,13 1,73 1,076 1,33 41,84% 26,05% 32,11% 55,20%
10000 4,41 1,63 1,211 1,57 37,01% 27,46% 35,53% 56,41%
10000 4,49 1,61 1,299 1,58 35,88% 28,93% 35,19% 54,88%
10000 4,3 1,69 1,137 1,47 39,33% 26,44% 34,23% 56,42%
10000 3,99 1,62 1,084 1,28 40,65%  27,17% 32,18% 54,22%
20000 6,16 1,669 1,828 2,66 27,09% 29,68% 43,23% 59,30%
20000 6,41 1,785 1,771 2,85 27,85% 27,63% 44,52% 61,71%
20000 6,11 1,729 1,845 2,54 28,30% 30,20% 41,51% 57,89%
20000 5,65 1,589 1,606 2,46 28,12% 28,42% 43,45% 60,45%
20000 6,84 2,417 1,607 2,82 35,34% 23,49% 41,17% 63,67%
30000 7,66 1,616 2,271 3,77 21,10%  29,65% 49,26% 62,43%
30000 7,59 1,563 2,377 3,65 20,59% 31,32% 48,09% 60,56%
30000 7,7 1,525 2,183 3,99 19,81% 28,35% 51,84% 64,65%
30000 8,31 1,604 2,527 4,18 19,30% 30,41% 50,29% 62,32%
30000 7,99 1,758 2,218 4,01 22,00% 27,76% 50,24% 64,41%

Table 6.7: Bottleneck analysis, dataThroughTtp archetype
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Chapter 7

Discussion

We started this thesis with the goal of investigating whether we could make an adaptive microservice
system that could capture data exchange archetype patterns in microservices. This would decouple date-
exchange microservice development from the core data exchange marketplace, allowing for development
and deployment without modifying the core system. Furthermore, different data exchange services can
be created by composing the microservices in different configurations. Essentially, the system would
function akin to a distributed operating system, abstracting away the core microservice complexity so
that development can focus on offering data exchange services and the system is able to optimize for
extra-functional properties, like energy and optimizing user experience.

In this chapter, we start by looking at the results from our quantitative experiments described in
chapter 5. This will give an initial idea of how this microservice approach behaves and which advantages
and disadvantages it brings, which will help define answers to the original research questions.

Given the size of the DYNAMOS implementation, which encompassed over 8000 lines of code, there
were certain research areas that remained unexplored due to time constraints. Consequently, we will
conclude this chapter by evaluating potential threats to the validity of our research.

7.1 Results discussion

In this section, we combine the results of the two experiments. We discuss the bottlenecks created by our
microservice approach, possible remedies to these bottlenecks and what effect these remedies will have.
We start by analyzing the data transfers between services and discuss the cold start time of ephemeral
microservice jobs.

7.1.1 Data transfers

In the first experiment, we see the computeToData archetype with three data transfers and the dataThroughTtp
archetype with six data transfers.

With the largest query (30000 lines, 4AMB message), around 50% of the time is spent in data transfers
in dataThroughTtp versus 23% in the computeToData archetype. Correcting for the startup time of
the container, this percentage rises to 62% and 32% respectively. The obvious difference is in the three,
respectively six data transfers happening.

In the alternative implementation of Marten Steketee [36]. The message consists of 4141 lines and is
around 8 MB. Two transfers happen, the first from the data provider to the third party by RabbitMQ),
which costs 916ms. The second from the third party to the user, 540ms, for a total of 1.46 seconds. The
total latency is 2.4 seconds, making data transfers to be also approximately 60% of the processing time.

This shows two facts. First, encoding and transferring data is done more efficiently in DYNAMOS,
this, however, could easily be improved in the other implementation. Second, the number of transfers
done in DYNAMOS highly impacts its latency.

Due to the microservice architecture, there will always be more data transfers than in a monolithic
application, microservices will need to transfer data to each other. In DYNAMOS, the sidecar pattern,
adds to that number of transfers. Completely removing the sidecar will reduce the dataThroughTtp
transfers from 6 to 4, and the computeToData archetype from 3 to 2.
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Finding 2: A microservice architecture will increase latency due to extra data transfers, this
problem is magnified by the use of a sidecar container

7.1.1.1 Removing the sidecar pattern

Removing the sidecar pattern by compiling a messaging (RabbitMQ) library into each data-sharing
microservices would decrease the amount of data transfers, latency, and the need for the current gRPC
data transfer methodology.

However, this approach comes with its own set of challenges:

e Tight Coupling: Direct integration would result in a strong dependency on the RabbitMQ plat-
form. Which makes transitioning to another messaging solution more challenging

e Update Overheads: Any change or update to the messaging library would necessitate modifica-
tions, recompilation, and redeployment of all data-sharing microservices

e Maintenance Issues: Microservices developed in various programming languages would use dis-
tinct libraries to connect to a single RabbitMQ instance, potentially leading to increased mainte-
nance complexities

Finding 3: Removing the sidecar pattern leads to a tightly coupled system

7.1.2 Cold starts

A 1.7-second average startup loss is long in the modern web application world. However, in this thesis,
we cannot qualify whether this would be unacceptable for a digital data-sharing marketplace solution.
One could argue that since the DDM removes a huge amount of effort in getting access to otherwise
near-inaccessible datasets, these few extra seconds in latency are trivial.

If future user requirements however seek to improve this cold start latency, there are ways to mitigate
this. The persistent job architecture discussed in chapter 3 could be used to avoid cold starts altogether.
The trade-off is unnecessary resource consumption and possible security risks (see section 3.5).

For the ephemeral job architecture, an alternative solution would be not to allow the user to add extra
options dynamically, like the ‘graph’ option. This would allow the agents to always have a job ready to
reduce or avoid cold starts. This comes at the cost of flexibility, user experience, resource consumption,
and increased exposure time which is a possible security risk.

Finding 4: Eliminating cold starts results in lowered security standards and could reduce
flexibility

7.2 Research questions

The previous section limited the discussion to the conclusions that could be drawn from the quantitative
experiments. In this section, we reflect on the system as a whole by discussing each question in turn.

7.2.1 RQ1

What are the advantages and disadvantages of different approaches to automatically re-
compose a running microservices architecture in a distributed system?

Throughout the thesis, we discussed the advantages and disadvantages of individual components. In
this section, we highlight a few that stand out or are an integral part of DYNAMOS.

7.2.1.1 Microservice chains

The microservice chain concept explained in section 3.4 and section 4.3 abstract away data-sharing
archetypes. The chains solve the question where services run and in which order the data flows.

The distributed agents generate the chain the moment a request arrives based on data from the
configuration store. This gives DYNAMOS the following options:
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e By modifying the configuration store, the orchestrator can dynamically change archetypes without
needing the user to be aware

e Through flags in the request the user can add and remove optional microservices, without involving
the orchestrator service

Finding 5: The microservice chains are the core of archetype abstraction and data-exchange
microservices

7.2.1.2 Microservice architectures

We discussed two microservice architectures, namely an persistent,- and ephemeral job architecture.

Persistent jobs:
The main advantages of the persistent job architecture are:

e Faster processing due to lack of cold starts

e Uses standard messaging for data transfers, avoiding the custom gRPC implementation discussed
in section 4.3

The main disadvantages are:

e Possibly less secure
e Constant resource usage

Ephemeral jobs
The main advantages of the ephemeral job architecture are:

e Complete isolation
e Resources consumption only when required

The main disadvantages are:

e More complexity in managing the jobs
e Cold starts
e Possible resource spikes

For a data steward that only offers a few datasets, with a limited amount of microservices that get
queried often, the persistent architecture is a great fit. For another data steward, with more varied, less
frequent requests, the ephemeral job architecture could be the better fit.

The design of DYNAMOS, with distributed agents running on a data steward, allows these choices
to be flexible. Whether it be through configuration by the data steward, through policy, or through
the agents’ decision to switch architectures due to system load, DYNAMOS can select the appropriate
architecture and support both, and other scenarios.

Finding 6: The distributed agent pattern allows flexible architectures

7.2.1.3 Data transfers

We made a custom data transfer methodology for ephemeral jobs using gRPC. This was to avoid con-
stantly needing to create and remove single-use queues in the messaging platform.

Advantages:

e Data transferred on Inter Process Communication level
e Language agnostic
e Loosely coupled

Disadvantages:

e Complex implementation
e Requires small gRPC library per language used in data exchange microservices
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7.2.2 RQ 2

What attributes/properties should a knowledge base contain to compose microservices in
a DDM environment?

We solved the challenge of composing microservices in a DDM environment by generating a microser-
vice chain, and abstracting away communication and data transfers, making sure that the data-exchange
microservices don’t need to have knowledge of the environment in which they’re orchestrated.

So to answer this question simply, the info needed for generating a microservice chain is the info
required to orchestrate microservices in a DDM environment. Next to a few more practical properties,
namely, queue names of microservices (jobs), and endpoints of the distributed agents.

All of this information, and more, is stored in the configuration management store, etcd, and thus
comprises the system state. This system state in etcd, is the core of DYNAMOS’ flexible design. It is a
constantly updated source of information for selecting an architecture or archetype, notifies the system
of actionable events, and finally, allows developers to configure the system without altering application
code.

Finding 7: Microservice chains are the core of composing microservices, etcd is the core of
making DYNAMOS dynamic and flexible

7.2.3 RQ 3

What extra attributes/properties should a ‘knowledge-base’ contain to make decisions on
extra-functional properties, like energy consumption and performance?

As discussed in Chapter 3.6, we looked at extra-functional properties such as user experience and
energy consumption. We also showed how past a certain point of system load (80%), it can make sense
to change archetypes and distribute the load more evenly over the system.

In Chapter 4.3, we show how DYNAMOS can dynamically adapt archetypes based on a ‘weight’
property. In Chapter 4.5 we demonstrate an architecture on how DYNAMOS can make adaptive choices
based on CPU and memory load, although we don’t actually implement the algorithms.

The answer to this research question ends up not being an exact list of properties. But the assurance,
and showcase, of how DYNAMOS can actively adapt to both active and new jobs. The exact algorithms
are for a future iteration of DYNAMOS. It is worth noting that it is the responsibility of the distributed
agents to expose metrics and threshold information. This means that each data steward can customize
how the orchestrator responds to exposed metrics, for example, by setting a lower threshold value.

Finding 8: Data stewards, through the distributed agents, can influence how the orchestrator
selects archetypes

7.3 Further insights

This design of DYNAMOS provides a clear separation of concerns, creating three main parts of the
system. The protocol files define an interface between these components making it explicit what parts
of the system can expect from each other.

One part is the interaction between the orchestrator and the policy enforcer framework. The interface
could possibly help the external development of the policy enforcer framework due to the explicitness of
the expected results.

The second part is the combination of the orchestrator and the distributed agents. In which the
orchestrator makes archetypes choices, and vice-versa the agents provide information on that system’s
state to guide these choices.

And finally, the data-exchange microservices are a separate component.

7.4 Limitations

The current implementation of DYNAMOS has a few limitations that we discuss in this section.

62



CHAPTER 7. DISCUSSION

7.4.1 Message size

The current max data transfer size is 4 MB or approximately 30000 lines, as mentioned in section 4.6.
This theoretically be set to unlimited, but this will consume a lot of memory on larger datasets. Due to
time constraints, the solution which is streaming data was not further developed.

7.4.2 API gateway

The user receives approval from the orchestrator to send data requests. At this moment this approval
will contain a URL, with either the endpoint of the data stewards or the trusted third party.

Since the archetype for a request can dynamically change, the endpoint might change in between
requests. In section 4.5 we describe how an API gateway could solve this issue. Due to time constraints,
this is not further implemented.

7.4.3 Data exchange microservices

Due to time constraints, only a few data exchange microservices have been developed. Not fully imple-
menting the use case.

7.4.4 Single data provider

Due to time constraints, DYNAMOS has only been tested with a single data steward in the dataThroughTtp
archetype. Currently, after receiving results from one data steward, the results would be returned and
the session closed, losing the results of the second data steward.

This could be solved by not closing the session and following up with more results or aggregating
them in one message.

7.5 Threads to validity

7.5.1 Specific sample use case

In this thesis, we took two archetypes and the UNL use case as the basis for the DYNAMOS implemen-
tation. I believe the implementation of the language to generate microservice chains, including the way
archetypes are defined, is general enough to extend to more use cases and archetypes. This, however, is
not proven and requires a more exact analysis of different use cases, request types, and archetypes.

7.5.2 Experiment statistics

The measurements and statistics shown in Chapter 5 are by no means statistically relevant. They were
taken on a single laptop, not a distributed environment, and lacking automation of trace analysis the
sample size was deliberately small.

The purpose of the experiments though was to get an initial feel for data transfer speed, bottlenecks,
and the effectiveness of the system. This objective was attained, showing quite clearly the effect of some
of the DYNAMOS’ design decisions.

7.5.3 (Generic microservices

We made a generic method of passing data from microservice to microservice and showed with a small
example how this data can be manipulated. However, we fell short of realizing the full chain as described
in the use case. The requirements for the microservices are generally listed in Appendix C, so for this
use case we believe it will work. However, we can not show, or prove, that this method of passing data
is user-friendly, or generic enough to scale up toward more complex data-sharing scenarios.

7.5.4 Authorization and data pods

The generic architecture hinges on the idea that we can implement web tokens, that can be invalidated,
to access data pods on data stewards. This has not been tested, or researched much for DYNAMOS,
although we believe that the techniques and technology do exist to make this happen, as discussed in
Chapter 2.
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7.5.5 Message size

As noted in 4.3, streaming data would be a possible method of working with larger datasets. How this
would be exactly processed by microservices expecting, for example, sql data, has not been properly
researched in this thesis.

7.5.6 HTTP

For communication between the microservices, whether it be for persistent or ephemeral jobs, we solely
focused on an AMQ or gRPC approach in this thesis. We believe in this scenario it makes sense to have
stable queueing in the form of AMQ, and in ephemeral jobs to have the direct IPC communication of
gRPC. However, we never fully investigated whether HT'TP should be completely discarded as an option.
We believing putting some extra effort into listing out the advantages and disadvantages of using HTTP
would be beneficial.
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Related work

8.1 Digital Data-sharing Marketplaces

The paper by Shakeri et al. [1] is a major inspiration for the design of this thesis. The paper proposes
a high-level architecture for a container-based DDM, clearly defining how a DDM would work, and
archetypes relevant for DDMs as seen in figure 2.2 (chapter 2. This architecture in figure 8.1 defines many
roles also used in this thesis like the ‘Policy matcher’, ‘Request Handler’, and request-based container
setup. The focus of Shakeri et al. however is evaluating and comparing different container overlay
networking methods, which is not what we are trying to achieve in this thesis.

The definitions of data-sharing archetypes were defined before Shakeri et al. by Zhang et al. [3].
The authors model type of customer requests to these archetypes and complement these with possible
metrics to use for evaluation. The authors list as possible future work: ‘How to map applications into
such policy-driven infrastructures?’. My hope is that the result and platform of this thesis can be an
experimental ground to answer questions such as that.

8.2 Self-adaptive Microservice systems

A lot of the research on self-adaptive microservices tends to be focused on architecture and modeling
[4][43][44][45]. Mendonga et al. acknowledge the limited scope of current works addressing the challenges
of developing self-adaptive microservice applications [23][37][46]. They strive to bridge the gap between
state-of-the-art research and practice, with a particular emphasis on the future of self-adaptive microser-
vices. Their work proposes a microservices service-mesh as the path to self-adaptability, exemplified by
KubowMesh, a modern microservice approach built on Kubernetes and the Istio service mesh [23, 37]
based on the self-adaptability patterns of Rainbow [47].

While Mendonga et al. provide a practical approach, other papers contribute key ideas. The concept
of distributed agents orchestrating microservices in a heterogeneous system draws from the computing-
fleet reference architecture, which proposes a three-layered architecture for microservice orchestration on
edge computing devices [43]. Many papers on self-adaptive (microservice) systems predominantly focus
on Quality of Service (QoS) attributes such as costs, seamless upgrades, resiliency, and scaling. For
instance, a comprehensive literature review on QoS-driven service composition under uncertainty provides
a taxonomy, comparisons, and analysis of state-of-the-art approaches [44]. Additionally, a proposal for
a multilevel self-adaptation architecture and domain-specific language (DSL) addresses seamless service
upgrades [45].

The MAPE-K approach is widely used in self-adaptive systems, and Arcaini et al. serve as a valuable
inspiration. Their work formalizes the modeling of MAPE-K systems in distributed systems, discussing
aspects of validation and correctness [4]. Boyapati et al. [48] implement a lightweight MAPE-K loop to
control dynamic rate limiting in a Docker compose setup.
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Figure 8.1: Container-based DDM [1]
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Conclusion

Creating a distributed system with a microservice architecture is not a trivial task, the 8000+ lines
of code that constitute DYNAMOS might be a testament to that fact. However, we feel confident
that DYNAMOS is a useful simulator for experimenting with microservice patterns and microservice
architectures in a DDM environment.

We believe in the choices we made in designing DYNAMOS. Microservices, which comprise loosely
coupled date-exchange services allow for separate parties to develop the services, while DYNAMOS
abstracts away the complexity. Latency is increased due to the microservices and the sidecar pattern,
however, in our view, the flexibility benefits this brings outweigh this issue.

We defined microservice chains as a directed acyclic graph, created a custom method of passing data
between services in short-lived ephemeral jobs, designed two microservice architectures, incorporated two
data-sharing archetypes, and analyzed how energy consumption and user experience as extra-functional
properties that can be used in the system to drive decisions. The power of DYNAMOS is that it can
dynamically choose archetypes and architectures and can be extended to support more. Finally, we
performed initial experiments to gain insight into bottlenecks and the advantages and disadvantages of
different microservice architectures.

In the studied literature, there are suggestions on how a DDM architecture could be created. DY-
NAMOS makes this practical. It can be used to experiment with security, different archetypes, and how
to interact with a policy enforcer. It allows for each part of the system to operate distinctly, just like an
actual data steward might want to do things differently from another.

We hope that this practical application of policy, archetypes, and microservices inspires future work
toward an actual Digital Data-sharing Marketplace.

9.1 Contributions

During our research with DYNAMOS made the following contributions:

9.1.1 Core research contributions

CR1 Combining data-sharing requests and DDM archetypes into microservice chains, see section 3.4

CR2 Specific microservice requirements for generic microservices to perform the AMDEX UNL use case
scenarios, see section 3.1 and Appendix C

CR3 Analysis of how baseline extra-functional properties (costs, energy, etc.) can be taken into account
in the system, see section 3.6

CR4 Analysis of different approaches to developing a distributed system for data-sharing purposes, see
chapter 4

CR5 Architecture to bridge the gap from a formal policy evaluation result, to a web environment where
jobs are executed, see chapter 4

9.1.2 Core technical contributions

CT1 Generic method to create single-use, self-cleaning (ephemeral) microservice jobs, see section 4.3
CT2 Generic communication method of transferring data through microservice chains, see section 4.3
CT3 Exact types, code, and templates to generate microservice chains, see chapter 4
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CT4 Loosely messaging solution, with exact message definitions for communication in DYNAMOS, see
chapter 3 and chapter 4

CT5 An open-source system that allows experimentation with microservice chains in a distributed en-
vironment, see our GitHub

9.2 Future work

There is a whole lot of future research we can think of to continue the work on DYNAMOS. A few
possibilities spring to mind however as more essential to show that the general architecture of DYNAMOS
is relevant.

9.2.1 Data pods and authorization

In this thesis, we have passingly mentioned the use of data pods and web tokens as authentication and
authorization methods. A logical next step would be to implement a data pod solution and show how
a user can get authentication to a dataset in that specific data pod, and nowhere else. This entire flow
could be essential in DDM, irrespective of how the final application is designed.

9.2.2 Expand archetypes and scenarios

To see if the current microservice chain generation holds, it is essential to study more use cases. Another
interesting use case would be a federated learning model, where the results of learning algorithms on
different parties aggregate. And archetypes that are more flexible in who gets the results.

9.2.3 Archetype selection algorithms

DYNAMOS has shown a framework and method on how active, and future jobs can dynamically pick
archetypes. Especially algorithms concerning ‘green-IT’ and resource consumption require more extensive
research.
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Appendix A

Installation instructions

A.1 Installing DYNAMOS

Before deploying the DYNAMOS components Linkerd needs to be installed and configuration needs to
be prepared for rabbitM@Q. Listing A.1 and A.2 show exactly how to prepare the Kubernetes cluster and
deploy the components.

A.1.0.1 Linkerd

#Linkerd

linkerd install —crds | kubectl apply —f —

linkerd install —set proxylInit.runAsRoot=true | kubectl apply —f —
linkerd check

linkerd jaeger install | kubectl apply —f —
# Possibly: linkerd viz install | kubectl apply —f —

Listing A.1: Preparing cluster

A.1.0.2 RabbitMQ

# Create namespaces by deploying the core.
corePath=<path to chart directory>
coreValues=$corePath/values.yaml

helm upgrade —i —f ”${coreValues}” core ${corePath}

# Uninstall core (it will fail anyway)
helm uninstall core

# Create a password for a rabbit wuser
pw=$(openssl rand —base64 12)

# Add password to all namespaces

kubectl create secret generic rabbit —from—literal=password=${pw} —m orchestrator
kubectl create secret generic rabbit —from—literal=password=${pw} —n uva

kubectl create secret generic rabbit —from—literal=password=${pw} —n vu

kubectl create secret generic rabbit —from—literal=password=${pw} —n surf

# Hash password
docker run —rm rabbitmq:3—management rabbitmqctl hash_password $pw

# configuration/k8s_service_files/definitions_example.json to definitions.json
# Add hashed password to RabbitMQ@Q definitions.json

#Install prometheus

helm repo add prometheus—community https://prometheus—community. github.io/helm—charts

helm repo update

helm upgrade —i —f "${coreChart}/prometheus—values.yaml” prometheus prometheus—community
/prometheus
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#Install Nginz
helm install —f "${coreChart}/ingress—values.yaml” nginx oci://ghcr.io/nginxinc/charts/
nginx—ingress —n ingress —version 0.18.0

# Install core
helm upgrade —i —f ”${coreChart}” core ${corePath}

Listing A.2: Preparing rabbitMQ

A.1.0.3 Deploying components

After preparing the cluster the following Helm commands can be used to deploy the individual com-
ponents at will. Add these commands to a function in a /.zhsre file or something equivalent for easy
deployment.

# Deploy orchestrator layer

orchestratorPath=<path to chart directory>
orchestratorValues=3orchestratorPath/values.yaml

helm upgrade —i —f "${orchestratorValues}” orchestrator ${corePath}

# Deploy agents layer

agentsPath=<path to chart directory>
agentValues=$agentsPath/values.yaml

helm upgrade —i —f ”${agentValues}” agents ${agentsPath}

# Deploy thirdparty layer

thirdpartyPath=<path to chart directory>
thirdpartyValues=$thirdpartyPath/values.yaml

helm upgrade —i —f "${thirdpartyValues}” surf ${thirdpartyPath}

Listing A.3: Deploying other components

A.1.1 Building DYNAMOS components

Building a service can be done by calling the ‘Makefile’ from the respective folder, see listing A.4 for an
example. The proto-files directory contains all ‘.proto’ files, which define all DYNAMOS messages.

cd go
make agent

# make all will build everything
# make proto will just generate the gRPC files.

# Re—deploy by wuninstalling the agent
helm uninstall agent
helm upgrade —i —f ”${agentValues}” agents ${agentsPath}

# Or just restart the pod:
kubectl rollout restart deployment agent —m agent

Listing A.4: Preparing rabbitMQ

A.1.2 Running DYNAMOS

Apart from deploying the application to the cluster, DYNAMOS can also be run locally. Each service
has both a ‘config_local.go’ and ‘config_prod.go’ file with global variables that allow it to run in, or out of
the cluster. Running locally is a bit more basic and might not support every scenario. To run a service
with the local variables include the ‘tags’ flag: “go run -tags local .”.

(0]




Appendix B

Jobs

B.1 Argo output

Name: artifact —passingxjd42

Namespace : argo

ServiceAccount : unset (will run with the default ServiceAccount)

Status: Succeeded

Conditions:

PodRunning False

Completed True

Created: Wed Aug 02 14:38:58 40200 (20 seconds ago)

Started: Wed Aug 02 14:38:58 40200 (20 seconds ago)

Finished: Wed Aug 02 14:39:18 +0200 (now)

Duration: 20 seconds

Progress: 2/2

ResourcesDuration: 9s*(1 cpu),9s*(100Mi memory)

STEP TEMPLATE PODNAME DURATION MESSAGE
artifact —passingxjd42 artifact —example

|- generate—artifact whalesay artifact —passingxjd42—whalesay —4165260985 58
|- consume—artifact print —message artifact —passingxjd42—print —message —3486089 5s

Listing B.1: DYNAMOS at rest

B.2 Defining a job

A Kubernetes job is straightforward to create with the Go SDK, as seen in listing B.2. The job specifi-
cation features that DYNAMOS uses.

e ActiveDeadlineSeconds — Job will be terminated after this deadline is exceeded, currently set at
10 minutes.

e TTLSecondsAfterFinished — Job will be removed after completing successfully, currently set at
30 seconds.

e BackoffLimit — On failure, how many times will the job retry to create the pod before counting
the job as a failure, defaults to 6.

In the current implementation recovering from failures is not handled perfectly yet. If a container
has some startup trouble, and recovers, it might all run to completion. However, when a data request is
already consumed from the queue it is gone. Meaning that if an application crashes or the pod is evicted
for some reason, the request needs to be re-submitted.

There are myriad ways of handling these failure scenarios, which need more research to determine
the best-fit scenario for DYNAMOS.

1| job := &batchvl.Job{
2 ObjectMeta: metavl.ObjectMetaq
3 Name : jobName ,

A Namespace: dataStewardName,

76



APPENDIX B. JOBS

}!

Labels: map [string]l string{"app": dataStewardName, "jobName": jobName
}, // for logging purpose

Spec: batchvl.JobSpec{

ActiveDeadlineSeconds: &activeDeadlineSeconds,
TTLSecondsAfterFinished: &ttl, // Clean up job TTL after it finishes
BackoffLimit: &backoffLimit,

Template: vl1.PodTemplateSpecq{
ObjectMeta: metavl.ObjectMeta{
Labels: map[stringlstring{"app": dataStewardNamel},

}’
Spec: vl.PodSpec{
Containers: [Jvi.Container{},
RestartPolicy: vl.RestartPolicyOnFailure,
}’

}’

Listing B.2: Job definition

7




Appendix C

Requirements

C.1 Microservice requirements

C.1.0.1 General requirements

Requirement Specification
Receive messages from an input queue Make use of side-car pattern for RabbitMQ connectivity
Implement proper logging, forwarded to a dashboard Make use of side-car pattern for logging
Send query result to next Microservice Original user request should be enriched with next
MS destinations
Proper error handling Breaking errors are thrown to side-car to handle

being returned to the user. Computation stops
Implement distributed tracing Install Istio in the Kubernetes cluster

C.1.0.2 Query service

Requirement Specification

Retrieve data from a ’data pod’ Support querying SQL and CSV files
Nice to have: Caching of sql results

C.1.0.3 Anonymize service

Requirement Specification

Identify columns that need anonymization Information should be stored as
metadata with the dataset
Recognize a type of anonymizing Information should be stored as
(Generalization, Masking or Perturbation) metadata with the dataset
Do anonymizing Create anonymization functions generalized
for different types of data (strings, dates etc.)
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C.1.0.4 Algorithm service

Requirement Specification

Perform calculations on SQL results Create generic functions that can calculate averages and sum
and other basic calculations
Recognize what to calculate from message input
Generalize for different types of datasets

C.1.0.5 Aggregate service

Requirement Specification

Wait for n amount of messages In which n is the amount of data stewards that are sending data

Merge two datasets Data should remain consistent

C.1.0.6 Graph service

Requirement Specification

Convert data to graphs Graph type based on input
Convert the graphs to PNG

C.2 Protocol messages

// The sidecar definition.

;| service SideCar {

rpc InitRabbitMg(InitRequest) returns (google.protobuf.Empty) {}

rpc Consume (ConsumeRequest) returns (stream SideCarMessage) {}

rpc SendRequestApproval (RequestApproval) returns (google.protobuf.Empty) {}

rpc SendValidationResponse(ValidationResponse) returns (google.protobuf.
Empty) {}

rpc SendCompositionRequest (CompositionRequest) returns (google.protobuf.
Empty) {}

rpc SendSqlDataRequest (SqlDataRequest) returns (google.protobuf.Empty) {3}

rpc SendTest (SqlDataRequest) returns (google.protobuf.Empty) {}

rpc SendMicroserviceComm(MicroserviceCommunication) returns (google.protobuf
.Empty) {}

rpc CreateQueue (QueueInfo) returns (google.protobuf.Empty) {}

s|message InitRequest {

string service_name = 1;
string routing_key = 2;
bool queue_auto_delete = 3;

}

message QueueInfo {
string queue_name = 1;
bool auto_delete = 2;
}

message ConsumeRequest {
string queue_name = 1;

bool auto_ack = 2;
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29 }

silmessage SideCarMessage {
32 string type = 1;
33 google .protobuf.Any body = 2;

34 map<string, bytes> traces = 3;// Binary or textual representation of span
context

5

36

;7| message Auth {

38 string access_token = 1;

39 string refresh_token = 2;

10 }

41

12l message DataProvider {

13 repeated string archetypes = 1;

44 repeated string compute_providers = 2;

5|}

i7|message ValidationResponse {
48 string type = 1;
19 string request_type = 2;

50 map<string, DataProvider> valid_dataproviders = 3;
51 repeated string invalid_dataproviders = 4;

52 Auth auth = 5;

53 User user = 6;

54 bool request_approved = 7;

55| ¥

s7|message User {
58 string id = 1;
59 string user_name = 2;

so| ¥

2| message RequestApproval {
63 string type = 1;

64 User user = 2;
65 repeated string data_providers = 3;
66 bool sync_services = 4;

co| message AcceptedDataRequest {
70 string type = 1;

71 User user = 2;

72 Auth auth = 3;

73 map<string, string> authorized_providers = 4;
74 }

7| message CompositionRequest {

77 string archetype_id 1;

78 string request_type = 2;

79 string role = 3;

80 User user = 4;

81 repeated string data_providers = 5;
82 string destination_queue = 6;

83 string job_name =7;

84 }

85

sc| message SqlDataRequest {

87 string type = 1;

88 repeated string data_providers = 2;
89 string query = 3;

90 bool graph = 4;
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string algorithm = 5;

map<string, string> algorithm_columns = 6;
User user = 7;
RequestMetada request_metada = 8;

7| // The sidecar definition.

service Microservice {
rpc SendData(MicroserviceCommunication) returns (google.protobuf.Empty) {}

}

message MicroserviceCommunication {
string type = 1;
string request_type = 2;
google.protobuf.Struct data = 3;
map<string, string> metadata = 4;
google .protobuf.Any original_request = 5;
RequestMetada request_metada = 6;
map<string, bytes> traces = 7;// Binary or textual representation of span
context
}
service Health {
rpc Check(HealthCheckRequest) returns (HealthCheckResponse) ;
rpc Watch(HealthCheckRequest) returns (stream HealthCheckResponse);
}

message HealthCheckRequest {
string service = 1;

| ¥

message HealthCheckResponse {
enum ServingStatus {
UNKNOWN = 0;
SERVING = 1;
NOT_SERVING = 2;
SERVICE_UNKNOWN = 3; // Used only by the Watch method.

ServingStatus status = 1;
}
service Generic {
rpc InitTracer (ServiceName) returns (google.protobuf.Empty) {}
}

message RequestMetada {

string correlation_id = 1;
string destination_queue = 2;
string job_name = 3;

string return_address = 4;

message ServiceName {
string service_name = 1;
}
service Etcd {
rpc InitEtcd(google.protobuf.Empty) returns (google.protobuf.Empty){}
rpc GetDatasetMetadata (EtcdKey) returns (Dataset) {}

7|}

message EtcdKey{
string path = 1;
}

message Dataset {
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APPENDIX C. REQUIREMENTS

string name = 1;

string type = 2;

string delimiter = 3;
repeated string tables = 4;

Listing C.1: protocol buffer messages

C.3 Example API body

{
"type": "sqlDataRequest",
"user": {
"ID": "1234",
"userName": "jorrit.stutterheim@cloudnation.nl"
1,
"dataProviders": ["VU","UVA","RUG"],
"syncServices" : true
}
Listing C.2: Example message body for request Approval
{
"type": "sqlDataRequest",
"query" : "SELECT * FROM Personen p JOIN Aanstellingen s LIMIT 10",
"graph" : true,
"algorithm" : "average",
"algorithmColumns" : {
"Geslacht" : "Aanst_22, Gebdat"
1,
"user": {
"id": "1234",
"userName": "jorrit.stutterheim@cloudnation.nl"
3,
"requestMetadata": {
"job_id": "jorrit-stutterheim-a4ec6229"
}
}

Listing C.3: Example message body for sqlDataRequest
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