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Measure of Efficiency: Why?

While defending against attacks, we need to
@ evaluate the defenses.
@ learn (ML)

@ etc.

To this end, we need to define efficiency of defense.




Measure of Efficiency: Which?

It is important that the efficiency will
o reflect the cost-benefit tradeoff

@ be higher when the system recovers




Approach

formally model

look for a useful sets of properties
suggest a natural satisfying solution
add properties to characterize the solution

Generalize the solution



® Revenue r: R — R,
® Time bound T

© Detection and recovery times ty and t, relatively to B

O Impact / 2 fror T(B —r(t))dt

tq

@ Cost c: R — Ry
@ Total cost Ct 2 [T (c(t))dt

ty

cost, ¢(t)

Baseljne




Required Properties

Decreasing with impact /
Decreasing with total cost Ct

No recovery is always smaller than recovery

E: {recovered, not recovered} x Ry x Ry — [0, 1]




Natural Definition

Let C bound the cost, 3 divide recovery from no recovery and
a € [0,1 — [3] define the importance of the impact

Definition

Define E(recovered or not, I, Ct) as
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This equation has the above properties.
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Natural Definition
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This equation has the above properties.



Natural Definition

Let C bound the cost, 8 divide recovery from no recovery and
a € 0,1 — j3] define the importance of the impact

Definition

Define E(recovered or not, I, Ct) as
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Natural Definition

Let C bound the cost, 8 divide recovery from no recovery and
a € 0,1 — j3] define the importance of the impact
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This equation has the above properties.



Axiomatic Characterization Theorem
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is the unique definition that satisfies the following:
@ Linearly decreasing with /

@ Linearly decreasing with Ct

© The ratio of the linear coefficient of the impact to the linear
coefficient of the total cost is independent of the recovery

© If no recovery takes place, exactly all the values in [0, 5] are obtained;
otherwise, exactly the values in [, 1] are obtained



Generalization to More Inputs
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@ More variables (e.g., multiple revenues and costs)
@ Each variable has positive or negative influence

@ Want to arrive at a measure between 0 and 1




Generalization: Expanding Equation

Required Properties

Let f be a strictly increasing function
@ Increasing with each f(y;),i=1,...,m
@ Decreasing with each f(x;),j =m+1,....m+/
@ No recovery is always smaller than recovery

o E: {recovered, not recovered} x RT" — [0,1]




Expanding Equation: Natural Definition

Let nonnegative ag, g, ..., amyj—1 St Zm+’ la;<1— 3 define the
importance of each term. Let each y; be bounded by Y; and let each x; be
bounded by X;.

Definition

Define E(recovered or not, y1,...,Ym,Xm+1,- - -, Xm+1) @S
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This has the above properties.
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This has the above properties.




Expanding Equation: Natural Definition
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Expanding Equation: Natural Definition

Let nonnegative a1, a2, ..., Qmij_1 St ZmJ” L ai <1 — B define the
importance of each term. Let each y; be bounded by Y; and let each x; be
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Definition
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Expanding Equation: Natural Definition
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Expanding Equation: Natural Definition

Let nonnegative a1, a2, ..., Qmij_1 St ZmJ” L ai <1 — B define the
importance of each term. Let each y; be bounded by Y; and let each x; be
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Definition
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This has the above properties.




Expanding Equation: Axiomatic Characterization Theorem
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is the unique definition that satisfies the following:
© Linearly increasing with each f(y;)
@ Linearly decreasing with each f(x;)

© The ratio of the linear coefficient of f(y;) or f(x;) to the linear
coefficient of any other f(yy) or f(xp) is independent of the recovery

© If no recovery takes place, exactly the values in [0, 3] can be obtained;
otherwise, all the values in [/3,1] and only they can be obtained



Generalization: Combining Efficiency Values

I

Given E;, the ith component of the efficiency, and its weight ~;, define

E2Y 1E, (3)
i=1

where 4 >0, >°7 ;v = 1.

Each E; € [0,1] = E € [0, 1].




Generalization: Expanding vs Combining

However,

If the system recovers, they are equivalent! l

The two generalizations are not equivalent. ‘




Conclusions

@ Defined efficiency that is monotone and respects recovery

® Axiomatic characterization

Generalizations:
@ Expanding equation and characterizing

@ Combining efficiency values as black boxes

Comparing these generalizations
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