Research update;
3" SARNET meeting

Ralph Koning

S

SARNET demo

Control loop delay:

- [] +

By using SDN and containerized NFV, the
SARNET agent can resolve network and
application level attacks.

From this screen, you can choose your attack
and see the defensive response.

Traffic layers
Toggle the visibility of the traffic layers:

Physical links Traffic flows

Choose your attack
Start a Distributed Denial of Service attack from all upstream ISP networks:

Start a specific attack originating from one of the upstream ISP networks:

Origin: UNSELECTED - CLICK ON A CLOUD

Object information

nfv.services.as100

KIND nfv
COMPUTE#DISKIMAGE 8d8dBa23-c112-421b-baba-49383679dcOb#img-nfv
COMPUTE#SPECIFICCE exogeni#XOlarge
EC2#WORKERNODEID uva-nl-wi
REQUEST#HASRESER... request#Active
REQUEST#INDOMAIN — uvanlvmsite.rdf#uvanlvmsite/Domain/vm
HONEYPOT.PWS [yamaha enter johnson]
Ds.CPU []
105.PW [10.100.4.100 10.100.4.101 10.100.4.102]
NFV-CHAIN [ids honeypot:4.100:4.101:4.102]
CPU-PCT 13

X
X
X

ids ~ honeypot

Timeout 356

Sampling

* Sampling
- Ringbuffer with n values (Default: n=10)
- New samples arrive asynchronously at about every 0.8 seconds (per metric)

— Samples for sales from two services are added together, worst case this
takes about 1.6 seconds.

» Detect: 30 percent of the samples in the window are below or above
treshold.

* Recover: if 70 percent of the samples in the window are above or
below treshold.

—

k SARNET agent metrics

Network metrics

Bandwidth:

Utilized: 492Mbit/s

Flows:

TCP:1663
UDP: 0

Application metrics

CPU:

Webshop 1: 76%
Webshop 2: 32%

/‘v/w\._./\,/_\._/—_,.___’_

Mﬂ/\

Successful transactions:

Webshop 1: 233
Webshop 2: 217

Login attempts:

Control loop

Leair ‘et ect
Respond ‘)Analyze

Decide

ANALYZE

Known crackers: 10.100.4.100, 10.100.4.101, 10.100.4.102
Latest password attempts:

* star

* little:

* chevy

RESPOND

Deployed NFV chain:

*ids

* honeypot:4.100:4.101:4.102

Observables

DDoS attack
- Detected if: Abnormal UDP, Sales < thresh(200)
- Recover if: Sales > thresh

CPU attack
- Detected if: CPU > thresh(85)
- Recovered if: CPU < thresh, Sales > thresh

PWD attack
- Detected if: failed > ok OR failed > thresh(20)
- Recovered if: failed < thresh

How to determine the right thresholds and observables?
— ML might help though has its caveats

- Determining what observables are needed and which ones are
Important cannot really be automated, unless we have all the data.

—

Effectiveness

Attack Start

Revenue

. Recovered
Baseline

Detect
Attack Stop

Implement

. = u i x
Determining effectiveness S\;

* Take the samples for a observable

 Subtract the threshold for that observable

* Invert the samples when needed (for sales)
e Set all negative values to O

* Use trapezoidial rule to determine integral
* Maybe normalize by dividing by baseline?

—

Partial recovery

Attack Start

Revenue

Recovered

v,
| Attack Stop

Max Recovery

Baseline

Detect

Implement

Partial recovery

* Current method: when variability does not
exceed <insert arbritrary value> from the mean.

* Better? Regression line in sample window and
look at the slope..

* How long should we wait to call partial recovery.
— It can still fully recover... eventually?

—

UDP filter

Password attack

Captcha recovery S\E

cccccccccc

sales.

sales_th
/\ qu_th

I—
L
= |
;—
—
>
j
:.
B
:7
i“?
[

— Faster recovery

Timeout and scalabllity SE

e Timeout:; After 120 seconds the chosen
countermeasure fails.

e Scalability issue?

- If it takes 2 minutes to try a single solution iterating
over 30 solutions takes about an hour (worst case).

- How about combined solutions.

—

] | UNIVERSITY OF AMSTERDAM
X

S\=

https://sarnet.uvalight.net/

mailto: rkonlng at uva.nl

TNOc NWO -~ LOMLI/
CI.QI‘Ia

AIRFRANCE_‘EKLM

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

