SARNET optimal protection strategies: a modeling approach

Stojan Trajanovski
University of Amsterdam, The Netherlands

Presented by dr. Paola Grosso

Industry workshop 5th October 2016

Motivation

Model

Problem

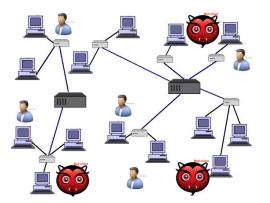
Algorithms

Some Results

Motivation

Modeling DDoS attacks

- 1. A given topology with nodes and links
- 2. Nodes = {good clients, bad clients, service nodes, other "routers"}
- 3. Boost the "good traffic" (good clients \longrightarrow service nodes)
- 4. Shrink the "bad traffic" (bad clients \longrightarrow service nodes)



Motivation

How to react? - Finding optimal response

- 1. current topology (nodes, links & interconnections)
- 2. permitted links (that can be made on or off)
- 3. current values and box constrains on the link bandwidths
- 4. filtering a certain flow
- 5. already determined good clients and bad/attackers
- 6. already determined service nodes

Multiobjective nature:

- 1. maximize the flow from good clients to the service nodes
- 2. minimize the flow from attackers to the service nodes
- 3. under the given constrains

Motivation

Model

Problem

Algorithms

Some Results

Model

Representing the network as a graph: (given inputs)

- ▶ directed graph $G = (\mathcal{N}, \mathcal{L})$ with a set of nodes \mathcal{N} and a set of links $\mathcal{L} = \{(i, j) | i, j \in \mathcal{L}\}$
- ▶ $k_{ij} \in \{0,1\}$ represents the initial link (i,j) presence
- $ightharpoonup c_{ij}^{\max}$ are the starting and the maximum allowed capacities of link (i,j), respectively
- ▶ $C \subset \mathcal{N}$ is the set of clients, $A \subset \mathcal{N}$ is the set of attackers, and $S \subset \mathcal{N}$ are service nodes

The aim is to maximize the successful flow from the nodes in \mathcal{C} to minimize/protect from the flow from \mathcal{A} to \mathcal{S} with a minimum cost

Permitted actions:

- 1. link delete or add (not for all pairs of nodes)
- 2. bandwidth up or down
- 3. flow filtering

Motivation

Mode

Problem

Algorithms

Some Results

Problem definition

Decision variables:

 $f_{ijkm} \in \mathbb{R}$ is a part of the flow on link (i,j) carrying a traffic from k to m $I_{ij}^+ \in \{0,1\}$ is 1 if link (i,j) has been added and 0 otherwise $I_{ij}^- \in \{0,1\}$ is 1 if link (i,j) has been removed and 0 otherwise $I_{ij} \in \{0,1\}$ is 1 if link (i,j) is present in the network and 0 otherwise $z_{ij} \in \mathbb{R}$ is the increase/decrease of the bandwidth on the link (i,j)

Maximize the flow from $\mathcal C$ to $\mathcal S$ and **minimize** the flow from $\mathcal A$ to $\mathcal S$

We formulated **Mixed Bi-linear Integer Programming (MBIP)** optimization problem. MBIP are usually hard to solve.

Problem definition

Objective function:

$$\max \quad \alpha \sum_{c \in \mathcal{C}, i \in \mathcal{N}, k \in \mathcal{N}, m \in \mathcal{N}} f_{cikm} - \beta \sum_{a \in \mathcal{A}, i \in \mathcal{N}, k \in \mathcal{N}, m \in \mathcal{N}} f_{aikm}$$
 (1)

Constrains:

$$\forall i \in \mathcal{N}, k \in \mathcal{N}, m \in \mathcal{N}, \sum_{j:(i,j)\in\mathcal{L}} f_{ijkm} - \sum_{j:(j,i)\in\mathcal{L}} f_{jikm} = 0, \tag{2}$$

$$\forall (i,j) \in \mathcal{L}, \quad \sum_{k \in \mathcal{N}, m \in \mathcal{N}} f_{ijkm} \leq c_{ij}^{\text{max}}$$
 (3)

$$\forall (i,j) \in \mathcal{L}, \quad \sum_{k \in \mathcal{N}, m \in \mathcal{N}} f_{ijkm} - z_{ij} = c_{ij}$$
 (4)

Problem definition

$$\forall (i,j) \in \mathcal{L}, k \in \mathcal{N}, m \in \mathcal{N}, \quad f_{ijkm} \geq 0$$

$$\sum_{(i,j) \in \mathcal{L}} I_{ij}^+ \leq C_{\text{add}}$$

$$\sum_{(i,j) \in \mathcal{L}} I_{ij}^- \leq C_{\text{rem}}$$

$$\sum_{(i,j) \in \mathcal{L}, k \in \mathcal{N}, m \in \mathcal{N}} a_{ijkm} \leq C_{\text{filter}}$$

$$\forall (i,j) \in \mathcal{L}, \quad (1 - I_{ij}) \sum_{k \in \mathcal{N}, m \in \mathcal{N}} f_{ijkm} = 0$$

$$\forall (i,j) \in \mathcal{L}, k \in \mathcal{N}, m \in \mathcal{N}, \quad a_{ijkm} f_{ijkm} = 0$$

$$(10)$$

$$\forall (i,j) \in \mathcal{L}, k \in \mathcal{N}, m \in \mathcal{N}$$

$$\forall (i,j) \in \mathcal{L}, \quad (1 - l_{ij}) \sum_{k \in \mathcal{N}, m \in \mathcal{N}} f_{ijkm} = 0 \qquad (9)$$

$$\forall (i,j) \in \mathcal{L}, k \in \mathcal{N}, m \in \mathcal{N}, \quad a_{ijkm} f_{ijkm} = 0 \qquad (10)$$

$$\forall (i,j) \in \mathcal{L}, k \in \mathcal{N}, m \in \mathcal{N}, \quad a_{ijkm} - l_{ij} \leq 0 \qquad (11)$$

$$\forall (i,j) \in \mathcal{L}, \quad l_{ij} + l_{ij}^- \leq 1 \qquad (12)$$

$$\forall (i,j) \in \mathcal{L}, \quad l_{ij}^+ - l_{ij} \leq 0 \qquad (13)$$

$$\forall (i,j) \in \mathcal{L}, \quad (1 - l_{ij}) f_{ij} = 0 \qquad (14)$$

$$\forall (i,j) \in \mathcal{L}, \quad (l_{ij} + l_{ij}^- - k_{ij}) (l_{ij} - l_{ij}^+ - k_{ij}) = 0 \qquad (15)$$

Motivation

Mode

Problem

Algorithms

Some Results

Algorithms

Two algorithms:

- 1. Close-to-exact algorithm (branch & bound)
- 2. Dedicated heuristic
- 3. Performance and running time analysis between both

Close-to-exact algorithm (1)

Concept of the algorithm

- non-linear and non-convex constrains, hence hard to solve
 - 1. there are known special case instances that are NP-hard!
 - 2. formal proof for more would be a contribution
- it can still be found close-to-optimal solution!
 - 1. based on the MBIP formulation
 - 2. non-polynomial algorithm
 - 3. branch & bound techniques
- using yalmip in Matlab (that unites several optimization packages)
 - CPLEX (IBM)
 - MOSEK
 - GUROBI
 - SeDuMi

under academic license

Dedicated heuristic (2)

Concept of the algorithm

- it is heuristic, but polynomial time!
- based on the links "centralities" regarding the flows
- greedy in nature
- Overview:
 - 1. for each potential link, if added in the network
 - 1.1 calculate all pairs max flow for each source and destination (*)
 - 1.2 compute the weighted objective sum/function (**)
 - 1.3 sort the weighted sums list in descending order (***)
 - 2. for each existing link, if removed from the network
 - 2.1 do (*), (**) and (***) from above
 - 3. try adding links from the sorted list in 2. until:
 - (i) there is an improvement in the weighted sum/objective flow
 - (ii) there are no more links than the given maximum $\mathcal{C}_{\mathsf{add}}$
 - 4. try removing links from the sorted list in 3. until:
 - (i) there is an improvement in the weighted sum/objective flow
 - (ii) there are no more links than the given maximum C_{rem}
 - calculate the weighted sum/objective flow with the obtained topology (no link addition/removal constrains)

Dedicated heuristic (2): 1/out of 3

Pseudo code

```
addedLinks \leftarrow [];
removedLinks \leftarrow [];
for each l \in \mathcal{L} do
    tempG \leftarrow G;
    totalFlow \leftarrow 0:
    if I does not exist in G then
        for r \in requests do
            maxFlow \leftarrow maxFlow(tempG,r);
            currentFlow \leftarrow flow(start(r),end(r));
            if start(r) \in "Good\ clients" then
                 totalFlow \leftarrow totalFlow + \alpha currentFlow;
            else if start(r) \in "Bad\ clients" then
                 totalFlow \leftarrow totalFlow - \beta currentFlow;
        end
        add (I, totalFlow) in addedLinks;
    else
         /* similar code for removedLinks */
    end
```

Dedicated heuristic (2): 2/out of 3 (cont.)

```
takeDescendingLinks(addedLinks, C_{add}); /*the highest traffic C_{add} links*/
takeDescendingLinks(removedLinks, C_{rem}); /*the high. traffic C_{rem} links*/
currentFlow \leftarrow weightedObjectivemaxFlow(G); tempG \leftarrow G;
for each entry ∈ addedLinks do
    totalFlow \leftarrow 0; tempG \leftarrow G + entry.link;
    for r \in requests do
        maxFlow \leftarrow maxFlow(tempG,r);
        currentFlow \leftarrow flow(start(r),end(r));
        if start(r) \in "Good\ clients" then
            totalFlow \leftarrow totalFlow + \alpha currentFlow;
        else if start(r) \in "Bad clients" then
            totalFlow \leftarrow totalFlow - \beta currentFlow;
    end
    if totalFlow>currentFlow then
        currentFlow \leftarrow totalFlow; G \leftarrow tempG;
    else
        break:
    end
end
```

Dedicated heuristic (2): 3/out of 3 (cont.)

```
tempG \longleftarrow G;

for each entry \in removedLinks do

| /* similar consecutive removal as the addition in the previous slide */
end

currentFlow \longleftarrow weightedObjectivemaxFlow(G);
return G, addedLinks, removedLinks, currentFlow;
```

Motivation

Mode

Problem

Algorithms

Some Results

Used topologies

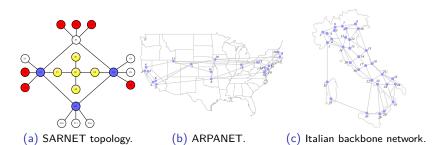


Figure: Used topologies.

Table: Real networks used in the evaluation.

Networks	Ν	L	Description
SARNET	21	22	the project topology
ARPANET	20	32	first packet switching network
ITALY	32	62	main fiber connections in Italy

Results (SARNET, dense topology)

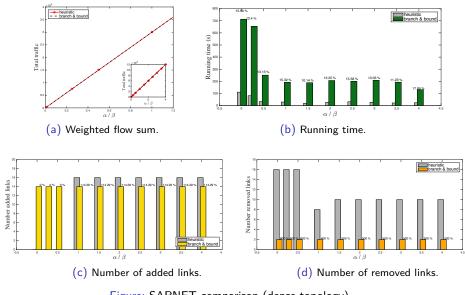
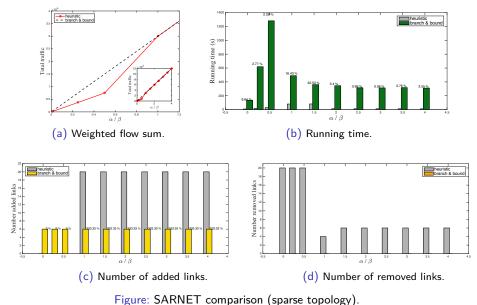


Figure: SARNET comparison (dense topology).

Results (SARNET, sparse topology)



Results (ARPANET, dense topology)

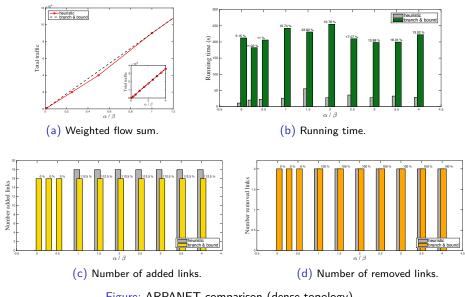


Figure: ARPANET comparison (dense topology).

Results (ARPANET, sparse topology)

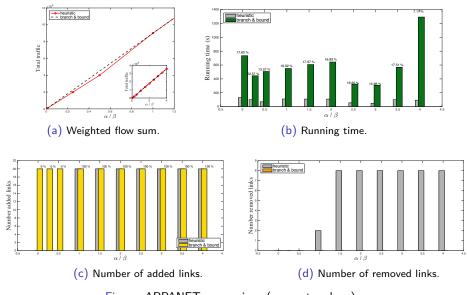


Figure: ARPANET comparison (sparse topology).

Results (Italy, dense topology)

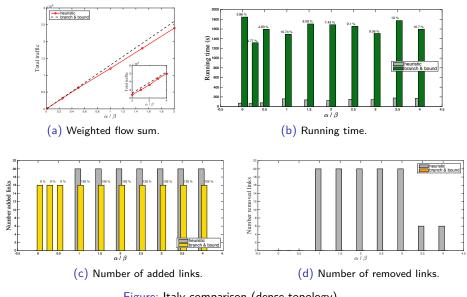


Figure: Italy comparison (dense topology).

Results (italy, sparse topology)

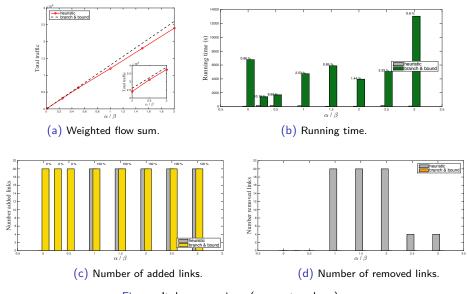


Figure: Italy comparison (sparse topology).

Motivation

Mode

Problem

Algorithms

Some Results

Conclusions

Contributions

- flow network models have been proposed
- two algorithms for solving the problem:
 - Close-to-exact algorithm (branch & bound, bi-linear mixed programming)
 - 2. Dedicated greedy heuristic
- the greedy heuristic shows surprisingly good performance
 - 1. the two algorithms are **closed** in objective function performance (especially for $\alpha > \beta$)
 - 2. the heuristic is significantly faster than the MBIP by factors 5 10
 - 3. 2 algorithms give different solutions:
 - (i) numbers of added links similar for $\alpha \geq \beta$
 - (ii) MBIP tends to not added as many links as the heuristic! reason the removal appears after the addition, hence "most of the job has been done" perhaps trying variants

Conclusions

Possible future steps

- complexity of the problem
 - $1.\,$ known to be NP-hard for the general case
 - proving the NP-hardness on some particular cases (only link addition or removal ...)
- ▶ integration with the SC demo and the real response of the strategies
- modeling the inter-domain issues
- modeling the virtualization

Questions?

email: s.trajanovski@uva.nl