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Tabular Synthetic Data Generation with Improved Semantic Integrity

● Problem

○ Alternative approach to making ML models private: generate private data, use without limitation

○ Task? estimating the true joint distribution of the input data

○ Output? a model that can generate unlimited synthetic records with the same statistical properties as real data

○ Evaluation? statistical tests, machine learning efficacy

○ Why focus on semantic integrity? generative models are probabilistic, even an effective model could possibly 
generate samples that are in distribution, but semantically incorrect, e.g. a patient over 200 years old, a female patient 
with prostate cancer

○ How?

■ Supervised: rule based, could be very expensive, we might not know all the rules out there

■ Unsupervised: learn the rules from the data itself
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● Our method
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Tabular Synthetic Data Generation with Improved Semantic Integrity

● Results compared with four state of the art models
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● Results compared with four state of the art models

○ Adult dataset: US census data

○ Long tailed features, minority classes

○ Two binary control features

■ C1: 5% of females positive, all men negative

■ C2: 70% of females positive, all men negative

○ Aim: estimate the distribution accurately

■ Without generating samples of males 

with C1/C2 positive

■ Without suppressing the female C1/C2 

positives – erasing the problem
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between the real and fake 
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● Results compared with four state of the art models

○ Adult dataset: US census data

○ Long tailed features, minority classes

○ Two binary control features

■ C1: 5% of females positive, all men negative

■ C2: 70% of females positive, all men negative

○ Aim: estimate the distribution accurately

■ Without generating samples of males 

with C1/C2 positive
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positives – erasing the problem

• If we train a ML model on 
two datasets, one real and 
one synthetic, will there be 
a noticable difference?

• Will the performance drop 
if the model is trained on 
synthetic data?
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Generating Heavy-Tailed Synthetic Data with Normalizing Flows

● Problem

○ Alternative approach to making ML models private: generate private data, use without limitation

○ Task? estimating the true joint distribution of the input data

○ Output? a model that can generate unlimited synthetic records with the same statistical properties as real data

○ Evaluation? statistical tests, machine learning efficacy
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● Our method

○ We use normalizing flows

○ We propose changes in the architecture to help the model better capture the tail of the input data

Image credit: Lilian Weng
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○ Aim is to accurately estimate the input data distribution and its tail properties
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○ Aim is to accurately estimate the input data distribution and its tail properties

Our proposed method replacing 
the simple base distribution with 
a mixture
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● Results

○ Toy dataset: samples from Neal’s funnel

○ Aim is to accurately estimate the input data distribution and its tail properties

○ Experiments on real datasets also show the same sort of improvement in both general performance and in capturing 
the tail behaviour

○ Second contribution: targeted sampling
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Thank You!


