Private Machine Learning The EPI Project

<u>Saba Amiri</u> Adam Belloum, Eric Nalisnick, Sander Klous, Leon Gommans

- Problem
 - Alternative approach to making ML models private: generate private data, use without limitation
 - Task? estimating the true joint distribution of the input data
 - Output? a model that can generate unlimited synthetic records with the same statistical properties as real data
 - Evaluation? statistical tests, machine learning efficacy
 - Why focus on semantic integrity? generative models are probabilistic, even an effective model could possibly generate samples that are in distribution, but semantically incorrect, e.g. a patient over 200 years old, a female patient with prostate cancer
 - How?
 - Supervised: rule based, could be very expensive, we might not know all the rules out there
 - Unsupervised: learn the rules from the data itself

• Our method

UNIVERSITY OF AMSTERDAM Informatics Institute

- Results compared with four state of the art models
 - Toy dataset
 - Two classes, four modes
 - Aim: estimate the distribution while
 - labelling the samples accurately

- Results compared with four state of the art models
 - Toy dataset
 - Two classes, four modes
 - Aim: estimate the distribution while

labelling the samples accurately

- Results compared with four state of the art models
 - Toy dataset
 - Two classes, four modes
 - Aim: estimate the distribution while

labelling the samples accurately

Table 1: Label accuracy for toy dataset

Model	Correct labels
medgan	74.8%
tablegan	92.9%
ctgan	92.1%
Our method	97.4%

- Results compared with four state of the art models
 - Toy dataset
 - Two classes, four modes
 - Aim: estimate the distribution while
 - labelling the samples accurately

Table 1: Label accuracy for toy dataset

Model	Correct labels
medgan	74.8%
tablegan	92.9%
ctgan	92.1%
Our method	97.4%

Table 2: Record distance

Model	Record distance
medgan	802
tablegan	6322
ctgan	2148
Our method	3941

- Results compared with four state of the art models
 - Adult dataset: US census data
 - Long tailed features, minority classes
 - Two binary control features
 - C1: 5% of females positive, all men negative
 - C2: 70% of females positive, all men negative
 - Aim: estimate the distribution accurately
 - Without generating samples of males

with C1/C2 positive

Without suppressing the female C1/C2

positives - erasing the problem

- Results compared with four state of the art models
 - Adult dataset: US census data
 - Long tailed features, minority classes
 - Two binary control features
 - C1: 5% of females positive, all men negative
 - C2: 70% of females positive, all men negative
 - Aim: estimate the distribution accurately
 - Without generating samples of males

with C1/C2 positive

Without suppressing the female C1/C2

positives - erasing the problem

	Table 3: Memorization results		
	Model	Detection score	
	medgan	0.001	
tablegan0.49ctgan0.48		0.49	
		0.48	
	Our method	0.50	

- How similar are the two datasets?
- Can we distinguish between the real and fake data samples successfully?

- Results compared with four state of the art models
 - Adult dataset: US census data
 - Long tailed features, minority classes
 - Two binary control features
 - C1: 5% of females positive, all men negative
 - C2: 70% of females positive, all men negative
 - Aim: estimate the distribution accurately
 - Without generating samples of males

with C1/C2 positive

Without suppressing the female C1/C2

positives - erasing the problem

Table 5. Memorization results		
Model	Detection score	
medgan tablegan	0.001 0.49 0.48	
Our method	0.48 0.50	

Table 2. Momonization regults

Table 4: Machine learning efficacy scores delta

Model	Accuracy	F1-score	F2-score
medgan	-0.32	-0.29	-0.22
tablegan	-0.35	-0.27	-0.21
ctgan	-0.24	-0.25	-0.18
Our method	+0.01	+0.04	+0.03

If we train a ML model on two datasets, one real and one synthetic, will there be a noticable difference?

 Will the performance drop if the model is trained on synthetic data?

Results

- Adult dataset: US census data
- Long tailed features, minority classes
- Two binary control features
 - C1: 5% of females positive, all men negative
 - C2: 70% of females positive, all men negative
- Aim: estimate the distribution accurately Ο
 - Without generating samples of males with C1/C2 positive
 - Without suppressing the female C1/C2

Table 3: Mem	orization results	Table 4: Mac	hine learning	g efficacy sc	ores delta
Model	Detection score	Model	Accuracy	F1-score	F2-score
medgan tablegan ctgan Our method	0.001 0.49 0.48 0.50	medgan tablegan ctgan Our method	-0.32 -0.35 -0.24 +0.01	-0.29 -0.27 -0.25 +0.04	-0.22 -0.21 -0.18 +0.03

Model	Accuracy	F1-score	F2-score
medgan	-0.32	-0.29	-0.22
tablegan	-0.35	-0.27	-0.21
ctgan	-0.24	-0.25	-0.18
Our method	+0.01	+0.04	+0.03

Table 5: S	Table 5: Semantic integrity - C1 and C2 features; Record distance				
Model	Females - C1	Females - C2	Males - C1	Males - C2	
Real data	70%	5%	0%	0%	
medgan	59.2%	$\bar{0}\bar{\%}$	$\bar{0}\bar{\%}^{}$	$\bar{0}\bar{\%}^{$	
tablegan	72.8%	1.3%	0%	0.4%	
ctgan	71.8%	14.9%	3.2%	0.9%	
Our method	72%	14.7%	1.7%	0.3%	

How much semantically incorrect samples are we generating?

Results

- Adult dataset: US census data
- Long tailed features, minority classes
- Two binary control features
 - C1: 5% of females positive, all men negative
 - C2: 70% of females positive, all men negative
- Aim: estimate the distribution accurately
 - Without generating samples of males with C1/C2 positive
 - Without suppressing the female C1/C2

positives - erasing the problem

Table 3: Mem	Table 3: Memorization results			nine
Model Detection score			Model	Ac
medgan tablegan ctgan Our method	0.001 0.49 0.48 0.50		medgan tablegan ctgan Our method	-0. -0. -0. +0

 Table 4: Machine learning efficacy scores delta

Model	Accuracy	F1-score	F2-score
medgan	-0.32	-0.29	-0.22
tablegan	-0.35	-0.27	-0.21
ctgan	-0.24	-0.25	-0.18
Our method	+0.01	+0.04	+0.03

Table 5: Semantic integrity - C1 and C2 features; Record distance

Model	Females - C1	Females - C2	Males - C1	Males - C2
Real data	70%	5%	0%	0%
medgan	59.2%	$\bar{0}\bar{\%}$	$\bar{0}\bar{\%}^{$	$\bar{0}\bar{\%}^{$
tablegan	72.8%	1.3%	0%	0.4%
ctgan	71.8%	14.9%	3.2%	0.9%
Our method	72%	14.7%	1.7%	0.3%

How much semantically incorrect samples are we generating?

Results

- Adult dataset: US census data
- Long tailed features, minority classes
- Two binary control features
 - C1: 5% of females positive, all men negative
 - C2: 70% of females positive, all men negative
- Aim: estimate the distribution accurately Ο
 - Without generating samples of males with C1/C2 positive
 - Without suppressing the female C1/C2

Table 3: Men	able 3: Memorization results Table 4: Machine learning efficiency		g efficacy sc	fficacy scores delta	
Model	Detection score	Model	Accuracy	F1-score	F2-score
medgan tablegan ctgan Our method	0.001 0.49 0.48 0.50	medgan tablegan ctgan Our method	-0.32 -0.35 -0.24 +0.01	-0.29 -0.27 -0.25 +0.04	-0.22 -0.21 -0.18 +0.03

Model	Accuracy	F1-score	F2-score
medgan	-0.32	-0.29	-0.22
tablegan	-0.35	-0.27	-0.21
ctgan	-0.24	-0.25	-0.18
Our method	+0.01	+0.04	+0.03

Model	Females - C1	Females - C2	Males - C1 Males - C2	
Real data	70%	5%	0%	0%
medgan	59.2%	$\bar{0}\bar{\%}^{$	$\bar{0}\bar{\%}^{$	$\bar{0}\bar{\%}$
tablegan	72.8%	1.3%	0%	0.4%
ctgan	71.8%	14.9%	3.2%	0.9%
Our method	72%	14.7%	1.7%	0.3%

How much semantically incorrect samples are we generating?

positives - erasing the problem

Generating Heavy-Tailed Synthetic Data with Normalizing Flows

- Problem
 - Alternative approach to making ML models private: generate private data, use without limitation
 - Task? estimating the true joint distribution of the input data
 - Output? a model that can generate unlimited synthetic records with the same statistical properties as real data
 - Evaluation? statistical tests, machine learning efficacy

- Our method
 - We use normalizing flows
 - We propose changes in the architecture to help the model better capture the tail of the input data

- Results
 - Toy dataset: samples from Neal's funnel
 - Aim is to accurately estimate the input data distribution and its tail properties

Results

UNIVERSITY OF AMSTERDAM Informatics Institute

- Results
 - Toy dataset: samples from Neal's funnel
 - Aim is to accurately estimate the input data distribution and its tail properties
 - Experiments on real datasets also show the same sort of improvement in both general performance and in capturing the tail behaviour
 - Second contribution: targeted sampling

- Results
 - Toy dataset: mixture of Gaussians
 - Second contribution: targeted sampling

- Results
 - Toy dataset: mixture of Gaussians
 - Second contribution: targeted sampling

īπ\S

- Results
 - Toy dataset: mixture of Gaussians
 - Second contribution: targeted sampling

Tabular Synthetic Data Generation with

 \mathbf{z}_0

 $\mathbf{z}_0 \sim p_0(\mathbf{z}_0)$

Results

- Toy dataset: mixture of Gaussians
- Second contribution: targeted sampling

UNIVERSITY OF AMSTERDAM Informatics Institute

- Results
 - Toy dataset: mixture of Gaussians
 - Second contribution: targeted sampling

īπ\S

Thank You!

