

EPI Framework: Approach for traffic redirection through containerised network functions

Authors: Jamila Alsayed Kassem, Onno Valkering, Adam Belloum, Paola Grosso

MultiScale Networked Systems University of Amsterdam, Netherlands

September 22, 2021 | 17th IEEE eScience2021, Austria

Towards Personalised Medicine

Why is it important?

- Personalised medicine is a novel approach to improve clinical care
 - ⇒ Individualised approach to diagnose and treat,
 - ⇒ Vital to enable collaboration between healthcare provider,

• Securely transmit, store, and process the shared data set.

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 Various healthcare use cases:

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 - ⇒ Various healthcare use cases:
 - \rightarrow Machine Learning

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 - ⇒ Various healthcare use cases:
 - \rightarrow Machine Learning
 - $\to \mathsf{Data}\ \mathsf{streaming}$

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 - ⇒ Various healthcare use cases:
 - → Machine Learning
 - \rightarrow Data streaming
 - → Electronic Health records

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 - ⇒ Various healthcare use cases:
 - → Machine Learning
 - ightarrow Data streaming
 - → Electronic Health records
 - ⇒ Heterogeneous infrastructure,

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 - ⇒ Various healthcare use cases:
 - → Machine Learning
 - ightarrow Data streaming
 - → Electronic Health records
 - ⇒ Heterogeneous infrastructure,
 - ⇒ Supported and applied security,

- Securely transmit, store, and process the shared data set.
- We need to provide an underlying infrastructure and consider
 - ⇒ Various healthcare use cases:
 - → Machine Learning
 - ightarrow Data streaming
 - → Electronic Health records
 - ⇒ Heterogeneous infrastructure,
 - ⇒ Supported and applied security,
 - \Rightarrow Policies.

How do we contribute:

- 1. EPI¹ Framework Novel data-sharing framework to support healthcare applications
 - Automated setup per application,
 - Orchestration and provisioning of Bridging functions

¹https://enablingpersonalizedinterventions.nl/

How do we contribute:

- 1. EPI¹ Framework Novel data-sharing framework to support healthcare applications
 - Automated setup per application,
 - · Orchestration and provisioning of Bridging functions
- 2. Our approach features containerised virtual network functions, and we focus on
 - Traffic manipulation via proxy tools implementation
 - · Benchmark redirection tools
 - & The results can be reused outside the EPI scope

¹https://enablingpersonalizedinterventions.nl/

Bridging policies and Resources

Bridging policies and Resources

The EPI Framework

EPI components:

- 1. Orchestrators:
 - ⇒ Application orchestrator
 - ⇒ infrastructure orchestrator
- 2. Policy management system
- 3. Domain components
 - Resources provisioner
 - Authoriser components

NGINX-based reverse proxy

SOCKS-based proxy

Experiments & Benchmarks

Goal: To determine which implementation should be adopted

- 1. We benchmark the two approaches:
 - time overhead (Δt)
 - rate of processed transactions (throughput)
- 2. Fully containerised and automated the benchmark setup https://github.com/epi-project/proxy-bench

The experiment's setups:

- 1. Experiments with different network configuration
- 2. Average round-trip time of 120 consecutive requests
- 3. Overhead vs no-proxy
- 4. Throughput vs no proxy
- **5.** Network tools:
 - httping
 - wrk

Network Topology

Topology	CP (ms)	PS (ms)	CS (ms)
Proxy-in-between	5	5	10
	5	10	15
	10	5	15
Triangular	1	1	1
	5	5	5
	10	10	10

Proxy-Server

Overheard: Proxy-in-between Topology

- ⇒ FIGURF 11
- ⇒ SOCKS-5 highest overhead,
- \rightarrow NGINX Δt is < 1ms,
- \rightarrow SOCKS6 Δt is $\simeq 6 ms$.
- \rightarrow SOCKS5 Δt is $\simeq 12ms$.
- ⇒ SOCKS imply more overhead.
- ⇒ Extra authentication steps during connection setup

Overheard: Triangular Topology

- ⇒ FiGURE 12
- \Rightarrow Much higher Δt
- \Rightarrow Overhead \uparrow with:
- $\rightarrow \uparrow$ distance CP,
- \rightarrow Not as much \uparrow PS.
- \Rightarrow Placement highly affects Δt ,
- \Rightarrow Optimisation option.

Rate of processed transactions

- ⇒ FIGURE 13
- \Rightarrow Flattens when hits 8,
- \Rightarrow Bottleneck of resources,
- ⇒ SOCKS6 has the highest,
- ⇒ SOCKS5 has the lowest.

Comparison and Discussion

Parameters	NGINX	SOCKS5	SOCKS6
Δt	•	0	0
Processing rate	0	0	•
Port scalability	0	•	•
Reconfiguration	0	•	•
Dynamicity	0	•	•
Security	0	•	•

Conclusion and Future Work

Manipulating traffic is a core feature

- We evaluated and benchmarked two different approaches
- Δt depends on positioning of the proxy
- Choice depends on
 - ⇒ The application requirements
 - ⇒ Specific relevance of performance parameters
 - → Time-critical application, NGINX
 - → Data streaming application, SOCKS6

Conclusion and Future Work

Ongoing work:

- Implementing more EPIF functionalities
- Bridging Function Chaining
- Uniform interfaces of bridging functions
- Extra plug-ins needed in the redirection tools
- Real test-beds and EPI usecases

- EPI website enablingpersonalizedinterventions.nl
- More about the area logic model: Jamila Alsayed Kassem, Cees de Laat, Arie Taal, and Paola Grosso, The EPI Framework: A dynamic data sharing framework for healthcare use cases", IEEE Access journal
- ICT.OPEN 2020: Jamila Alsayed Kassem, "EPI infrastructure: A dynamic infrastructure to secure data sharing in healthcare applications."
- ICT-Open 2021: Jamila Alsayed Kassem, "EPI Framework: A dynamic infrastructure to support health applications."
- More about BRANE: https://docs.brane-framework.org/
- Source code: https://github.com/onnovalkering/brane