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Abstract—Utilising programmable infrastructures is a promis-
ing approach to support secure data-sharing across healthcare
domains of different capabilities in terms of network and secu-
rity. The EPI1 (Enabling Personalised Interventions) framework
automates the setup of the underlying infrastructure while
considering different requirements communicated by the EPI
components, such as logic area generator and policy management
system.

In our approach to dynamically provide collaborative envi-
ronments, we containerise network functions (VFs), that are
shipped out and instantiated at the edge of the network. We use
container-based Virtual Network Function (VNFs) to accomplish
fast deployment, high reusability, and low-performance overhead.

Traffic interception and redirection through the chain of con-
tainerised network functions is a core feature of our framework.
In this paper, we focus on the implementation and design of
this tool for packet interception and redirection. We evaluate the
performance of two approaches: an NGINX-based reverse proxy
method and a SOCKS protocol-based method. We benchmark
them to determine the overhead compared to a direct data-
sharing session with no proxy. We conclude that the reverse proxy
performs better in terms of overhead. Nonetheless, the SOCKS-
based method works on a lower network level support all traffic
types and offer a higher processing rate. We compare the methods
according to other performance parameters. Subsequently, the
choice of method will depend on the application performance
requirements.

Index Terms—containerised network functions, traffic redirec-
tion, programmable infrastructures, personalised medicine

I. INTRODUCTION

SHARING data securely among healthcare providers is

still a unresolved challenge. Programmable and virtualised

infrastructure can provide the mechanisms to support this.
In fact, the current generation of network and ICT in-

frastructures already heavily rely on virtualisation, given the

successful evolution of virtualisation over the past decades [1].

The ETSI (European Telecommunications Standards Institute)

standardised the NFV architecture, which can be extended

to define the next generation of network infrastructures [2].

The architecture addresses the management and coordina-

tion of network resources for cloud-based applications and

the network services lifecycle. Moreover, the NFV paradigm

allows on-demand implementing and instantiating of NF’s

such as firewalls, segmentation, Deep Packet Inspection (DPI),

etc. This is fundamental when dealing with heterogeneous

collaborative domains.
SDI’s (Software-defined Infrastructures) are emerging as

programmable infrastructures that are managed by centralised
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control plane components. SDI is an approach for integrating

control and management of heterogeneous computing and net-

working resources in software. The proposed technology offers

adequate programmability that can be further exploited for the

development of infrastructure-independent NFV frameworks

to facilitate cross-domain innovation through the use of open

interfaces. These complementary technologies can be utilised

to build a dynamic network infrastructure to adapt to different

requirements/ healthcare application request.
Our work is part of the EPI (Enabling Personalised In-

terventions) project that ultimately aims to empower patients

through self/joint management of their personalised treatment

and recovery cycle. In our work, we aim to promote secure and

reliable health data-sharing across heterogeneous domains.
On the other hand, NF’s can be container-based, which

is the design decision we’re taking. In this case, NF’s and

all their dependencies are encapsulated in lightweight Docker

containers to offer platform independence, fast instantiation

time, low resource utilisation, and high processing rate. After

setting up the NF’s, redirection tools should be employed

through a specified route.
In this paper, we evaluate packets redirecting tools that

would serve as a building block of the proposed EPI frame-

work - EPIF [3]. We implement several methods to effectively

control traffic routing and redirection. That will be used to

force traffic through Bridging Functions (BF’s) containers

(network and security services).
At a lower level, we need appropriate technologies to

implement efficient traffic redirection functionality. We expect

that the infrastructure’s dynamicity comes at a price of network

performance and overhead. We aim to experiment and inves-

tigate the impact of introducing different redirection proxies

in the middle of a data-sharing session.
We evaluate and benchmark the performance of reverse

proxy and SOCKS based implementations according to the

overhead, processing rate, and defined parameters. We con-

tribute to the existing work in the same field as follows:

• We introduce a novel data-sharing framework that sup-

ports healthcare applications

• We implement different proxy tools to accomplish traffic

manipulation through containerised NF’s

• We benchmark redirection tools and evaluate according

to performance parameters

• We compare and discuss the results which aren’t specific

to EPIF and can be reused in a different scope.

This paper is organised as follows: In Sec. II, we introduce

the EPIF in the context of personalised medicine. In Sec.

III, we elaborate on the concept of bridging functions and
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the area logic model employed in the EPIF. In Sec. IV, we

touch on the implementation designs of the proxy component

utilising a traffic redirection functionality. In Sec. V, we

illustrate the protocol traffic of each proxy in order to estimate

the connection setup time of each. In Sec. VI we detail

the evaluation of the implementations with some insights. In

Sec. VII, we compare the proxies according to a number of

parameters. Lastly, we showcase related work in Sec. VIII and

conclude our work and introduce potential future work in Sec.

IX.

II. TOWARDS PERSONALISED MEDICINE

Personalised medicine is a novel approach to improve clin-

ical care by using an individualised or stratified approach to

diagnosis and treatment rather than a group treatment approach

[4].
On the road towards personalised medicine, it is necessary

to enable collaboration between healthcare providers. In fact,

effective medical data and electronic health records (EHR)

sharing is a key enabler in health research and achieving

personalised medicine. Due to the inherently sensitive nature

of this information, it is vital to securely transmit, store, and

process the shared data sets. With that in mind, the main chal-

lenge is to dynamically set up a collaborative environment/data

sharing application request to ensure maximal security across

different healthcare domains. A data-sharing framework is

needed to bring together cooperative efforts of research cen-

tres, health institutions, and patients groups. The framework

should consider policies, different parties’ infrastructural ca-

pabilities (network and security functions supported), and the

methods to dynamically match requirements to setup actions.
EPIF we proposed in [3] is the solution to this problem,

as it manages and configures the underlying infrastructure to

effectively run healthcare applications and support relevant

collaboration data-sharing models (archetypes).

A. The EPI framework
EPIF is a dynamic health data sharing framework that

accommodates different domains’ infrastructural capabilities

by shipping and managing containerised security and network

services called bridging functions, which run at special proxy
nodes. We will describe in detail these capabilities in Sec. III.

An automated setup of the infrastructure is required to achieve:

• Reachability of the end-points nodes;

• Optimal security across collaborating domains;

• Reasonable network performance;

• Bridging services availability;

• Hardware selection and scalability (horizontal vs vertical

scaling);

• At a higher level, abiding and enforcing policy manage-

ment requirement.

As shown in Fig.1, EPIF has different components that are

crucial to automate the data sharing processes between partici-

pating parties. The main components of the framework are the

orchestrators (both at the application level and infrastructural

level); the policy management system and the components

required to be present at the participating institutions, namely

the resource provisioner and the authorizers.

7. Ready
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[EPIF]

2. Submit
Exchange metrics

relevant to policies.

Application
orchestrator
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1. Submit Application
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Fig. 1: A high level view of the different EPIF components

and their interactions after an application request.

1) Orchestrators: EPIF employs a dual orchestrator de-

sign. There is an application-focused orchestrator and an

infrastructure-focused orchestrator. The two orchestrators, in

principle, operate independently but exchange runtime infor-

mation so they can collaboratively enforce policies and give

insight into the functioning of the combined deployment.

• The application orchestrator is the EPIF starting point

for executing applications. After receiving an applica-

tion submission (step 1 - Submit - in Fig.1), it first

sends a request to the infrastructure orchestrator (step

2 - Submit) to streamline any discrepancies between

the targeted infrastructure domains. This streamlining,

described in detail in Sec. III, is done transparently

to the application orchestrator. The final result of the

communication with the infrastructural orchestrator is

the receipt of confirmation of setup (step 7 - Ready).

At this point, the application orchestrator considers the

targeted infrastructure domains as ready and that there

is an inter-connected execution environment. The appli-

cation orchestrator will handle the heterogeneity of the

made-available resources, i.e. compute nodes by direct

interactions (step 8 - Orchestrate Application).

• The infrastructure orchestrator arranges all aspects

related to the multi-domain target environment. The or-

chestrator requests access to the domain resources (step 3

- Request Access); after being granted access it requests

specific nodes (step 4 - Request Nodes); finally, it man-

ages the required bridging functions (BF) that are needed

basing on the area logic model (Sec. III-A) via step 6 -

Orchestrate Networking.

Decoupling the two orchestration concerns into separate

systems increases the applicability of the EPIF. That is ap-

parent with infrastructure orchestrator’s independent operation

that makes it possible to supporting alternative application

orchestrators, such as Vantage6 [5] that is privacy preserving

federated learning infrastructure. On the other hand, imple-

menters targeting the EPIF can deploy the application orches-

trator independently for development and testing purposes to

improve productivity.

Brane [6], a framework for programmable orchestration,

is at the core of both orchestrators. Programmability is an

essential aspect of enabling dynamic adaption to heterogeneity

across infrastructure domains.
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2) Policy management system: The policy management

system captures allowed and denied data flows. It considers

different constraints such as GDPR, patients’ consent, and

the intended goal of the application scenario. The system can

deduce extra setup requirements and communicate them to the

infrastructure orchestrator via specific Domain-Specific Lan-

guages. The communicated policy is estimated to be dynamic,

as it can change during an application request, and the EPIF

is asked to adapt and comply with any policy change.

3) Domain components: At all the participating organiza-

tions a resources provisioner and authoriser components are

required. They might be implemented directly by the domain,

in which case they have to implement the proper APIs to

interact with the EPIF, or they can be provided as pluggable

components from the EPIF itself, in which case they are

compatible with the infrastructure orchestrator.

In the specific case of one single domain, an EPI client

can run an application on (physical/virtual) node(s) within one

healthcare domain by only submitting a request via Brane.

This is illustrated in Fig. 1 with steps 1 and 8. In all other

cases, we need multi-domain communication and this is taken

care of by the EPIF components in steps 2-7.

III. BRIDGING POLICIES AND INFRASTRUCTURAL

RESOURCES

A core element of the EPIF operations is the need to match

the policy constraints provided by the policy management

system with the underlying capabilities of the infrastructure.

To support this, we defined in [3] two core concepts: security
areas and bridging functions.

The area logic model works on grouping end-points nodes

partaking in a data-sharing application according to the as-

sociated network and security functions that are supported

and applied by the node itself into security areas. After that,

the logic model deduces which bridging functions need to be

instantiated to move data between nodes in different areas.

A. Area logic model

A health domain party has a number of nodes which are

the endpoints of physical/virtual resources. We represent all

resources endpoints included in the infrastructure by the set

N of nodes:

N = {ni | i = 1, ...,m}, (1)

where ni represents a single node in the infrastructure and m
is the total number of nodes.

To evaluate the security and network capabilities of a node

with a domain, we consider the associated attributes set.

Attributes refer to the node’s supported and applied network

and security functionality within a network, such as segmenta-

tion, data encryption and key management, firewalls, scalable

network links, etc. Let A be the set of all possible attributes:

A = {ak | k = 1, ..., d}, (2)

where ak represents a distinct attribute and d is the total

number of attributes.

Once the application scenario is made clear, the infrastruc-

ture is initialised to support it. Let NApp be the set of nodes

relevant to an application scenario, such that:

NApp ⊆ N, (3)

where N is the silo of resources (physical/virtual nodes) of all

parties and NApp specifies the nodes collaborating in a specific

application scenario. Each node’s capabilities are described by

a set of attributes, which can be any subset of A. Subsequently,

every node nj in NApp is assigned Aj ⊆ A.

After we define NApp and its associated attributes, we can

evaluate these nodes’ security and reachability across domains.

The area abstraction is used to identify heterogeneity between

nodes and deduce which data movements are supported and

feasible: we call such supported communication between

nodes in different areas channels. The logic dictates that

data movement is supported when Eq. (4) is satisfied, where

ng ⇒ nh represents a one data movement support between

nodes ng and nh. That means that a directional movement

from ng to nh is supported when the capabilities of nh (Ah)

is the same or a superset of that of ng (Ag)

ng ⇒ nh, iffAg ⊆ Ah. (4)

B. Bridge attribute gaps

Application requests, policy rules, and available channels

might not necessarily be compatible, and this can be an

issue to run an application successfully. Continuing with our

formalism, we can see that condition Ag ⊆ Ah supports data

movement from node ng to nh. Otherwise, Ag is not a subset

of Ah and communication is in principle not possible.

As shown in Fig. 2, BF’s are introduced to bridge attributes

gaps, and subsequently enable communication that wasn’t

previously supported across different areas and domains. Con-

cretely, a bridging function is introduced to apply the missing

attributes εgh and by that enabling the previously missing

communication, if possible. In Eq. (5), εgh indicates the

missing attributes

εgh = Ah ∩Ag. (5)

There is a known set of bridgeable attributes Aδ . Aδ is set

a priori. Aδ is bridged by an associated BF’s that are con-

tainerised and shipped to be pooled on the proxy nodes. BF’s

are independent of the capabilities of the infrastructure. The

bridging function applies the missing attribute if εgh ⊆ Aδ .

This supports the data movement and ensures reachability and

security within collaborating nodes across different domains.

The BF’s images are provisioned and maintained in proxy

nodes. As illustrated in Fig. 3, there exists a proxy per

network, which allows the proxy to act as a single mini-

orchestrator. The proxy intercepts, controls, and manipulates

traffic. The EPIF employs redirection tools to enforce traffic

through the proxy and consequently through the BF. Note

that it is sometimes needed to have a number of cascading

bridging functions, ie function chains, to put two areas in

communication.
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(a) Initial unsupported data flow in multi-domain environment

(b) Enabling previously unsupported channel via instantiating BF’s at a proxy
node

Fig. 2: An illustration of an example scenario of different

domains nodes belonging to different security areas

The architecture in Fig. 3 shows how the proxy components

fit with previously defined components in Sec. II-A.

Three main concerns arise when dealing with bridging

functions:

• unfeasible bridges: There exists an unfeasibility ratio

that needs to be considered in case εij not ⊂ Aδ; an

unsupported data movement is unbridgeable.

• costs: There is a cost associated with the bridging func-

tion in terms of time and complexity to set it up;

• redirection tools: There is the need to identify and test

the appropriate tools to effectively intercept and redirect

traffic through the instantiated BF’s running on the proxy.

The EPIF manufactures by software network and security

container-based functionalities, and host it on the proxy node.

The newly introduced functionalities are flexibly and dynami-

cally traded and provisioned by the orchestrators. As a result,

the EPIF adapts the underlying infrastructure to support health

applications (e.g. medical data streaming, EHR and backup,

machine learning model training) with different archetypes.

In the next sections, we address the last concern and

introduce the different proxy implementation approaches and

the performance of the redirection tools.

IV. PROXY IMPLEMENTATIONS

We evaluate two proxy implementation candidates for the

EPIF. The first candidate that we consider is a reverse proxy.

The second candidate is a SOCKS compatible proxy. Nodes

route outgoing network traffic through a separate proxy node.

On the proxy node, the appropriate BF chain processes the

network traffic before the proxy implementation sends the

network traffic to the destination.

A. Reverse proxy

The reverse proxy approach implements the NGINX reverse

proxy tool [7]. This proxy tool is widely used to balance

load through multiple servers, display content from multiple

websites in a seamless manner, or transfer requests for han-

dling to application servers using protocols other than HTTP.

The reverse proxy works by proxying a request, redirects it

to the specified server, retrieves an answer, and sends back

the reply to the client. The proxy acts as the middleman

handling requests, redirecting them, and forwards back the

reply. The proxy can handle requests to non-HTTP servers

(for example, PHP or Python) using a specified protocol. The

implementation of the reverse proxy is illustrated in Fig. 4.

The redirection table is customised and initialised at the proxy

VM, and each port is coupled to identify a different destination

server. This approach is very simple and effective, but it is vital

to know the exact port to reach beforehand. Moreover, several

reverse proxies can be to handle BF chaining, but the route

must be static or reconfiguration is needed.

B. SOCKS compatible proxy

SOCKS is a standardised proxy protocol for TCP and

UDP connections. Our SOCKS compatible proxy implements

the latest version of the protocol 5 [8] and the latest draft

of its next iteration 6 [9], currently under development. A

major latency bottleneck of the latest version is the number

of required round-trip times (RTTs) during connection setup

(handshake). In total, this may be up to 5 RTTs. The next

iteration reduces the number of required RTTs, introduces

minor tweaks to the protocol, and specifies how SOCKS

implementations can, optionally, utilise Multipath TCP [10]

and TCP Fast Open [11].

Our SOCKS compatible proxy implementation, illustrated

in Figure 5, relies on a redirector component running on all

nodes that will be used by the EPIF in the various domains

(Section II-A). Using iptables, a packet filtering utility

for the Linux kernel2, the redirector component intercepts all

outgoing network connections and redirects them to the proxy.

As specified by the SOCKS protocol, the redirector will also

communicate the intended destination of connections with the

proxy. Based on the source, intended destination, and the area

logic model (Section III-A), the proxy can correctly process

and forward the connections.

For the proxy, processing connections includes applying

the appropriate BFs (Sec. III). The SOCKS protocol can also

function as a template for the described BF chain mechanism

(Sec. III-B). Specifically, SOCKS proxies are chainable and

the intended destination of connections can easily be pre-

served. BFs can share metadata during SOCKS connection

2https://www.netfilter.org
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Fig. 3: A figure showing the EPIF architecture with different EPIF components running (including the proxy node).

Fig. 4: Reverse proxy implementation, showing the redirection

mechanism for data flow redirection through the proxy.

setup(s), i.e., chain establishment, to enable inter-BF coor-

dination. Furthermore, BFs with a uniform interface make

dynamic and arbitrary chain compositions straightforward. The

accumulative latency bottleneck of SOCKS is reduced using

the latest iteration of the protocol and becomes negligible

when the entire BF chain runs on the same proxy node.

V. COMMUNICATION WITH PROXY

To understand the effect of simulating varying network

topologies distances, we take a closer look at the sequence of

communication per each proxy implementation approach. Fig.

6 illustrates typical sequence communication steps between a

client C and a server S in a no-proxy scenario. Throughout

this section, we assume that this is an HTTP request over

Proxy node

Source node Destination node

Intended connectionClient Server

Redirector

SOCKS interface

BFn...BF1

1. Intercept

2. Redirect 4. Forward

Redirector

3. Process

Fig. 5: The SOCKS compatible proxy receives redirected

connections that the redirector on the client node intercepts.

TCP: SYN/ACK+SYN packets are from TCP and the Re-

quest/Response represent HTTP messages. We formalise Eq.

6 to estimate the communication setup time in a no-proxy

scenario, such that:

TNo−proxy ≈ 2RTTCS + tserver, (6)

where RTTCS is the time of a single round-trip time from C

to S, and tserver is the server request processing time. We use

the same server container in all scenarios so tserver does not

change throughout this paper. TNo−proxy is dependant on the

CS distance, and it is used as a base reference to calculate Δt
in other scenarios involving a proxy.
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C S

SYN

ACK + SYN

Request

Response

Fig. 6: A sequence diagram showing the communication steps

in a no-proxy scenario.

Fig. 7 focuses on the NGINX communication sequence

between the client C, proxy P, and the server S. In this diagram

we have node P running between C and S, which introduces

extra SYN and ACK traffic. Subsequently, we estimate the

C P S

SYN

ACK + SYN

Request

SYN

ACK + SYN

Request

Response

Fig. 7: A sequence diagram showing the communication steps

in a scenario including NGINX-based proxy.

setup time of communication passing through an NGINX-

based proxy with:

TNGINX ≈ 2RTTCP + 2RTTPS + tserver + tproxy, (7)

where RTTCP and RTTPS are the round-trip time between

C-P, and P-S, respectively, and tproxy is the processing time

of an NGINX proxy.

Moreover, we illustrate a similar communication sequence

for SOCKS5-based proxies in Fig. 8, where we introduce

redirector element. The redirector always runs on the same

host (as showed in Sec. IV-B), meaning that the round-trip

time from C to redirector is negligible.

There are extra steps of authentication in this proxy im-

plementation, which implies higher overhead, and an overall

higher setup time due to additional round-trips.

The notation of the setup time for a request passing through

a SOCK5-based proxy is TSOCKS5, and we estimate it with:

TSOCKS5 ≈ 5RTTCP+2RTTPS+tredirector+tproxy+tserver,

(8)

such that, RTTCP is the round-trip time from C to P (passing

through the redirector), and RTTPS from P to S. tproxy is

C Redirector P S

SYN

ACK + SYN

SYN

ACK + SYN

Auth. methods

Method

Auth. request

Auth. response

CONNECT

SYN

ACK + SYN

Connected

Request

Response

Fig. 8: A sequence diagram showing the communication steps

in a scenario including SOCKS5-based proxy.

the SOCKS5 proxy processing time, and tredirector is the

redirector processing time.

Similarly, Fig. 9 shows the communication steps with

SOCKS6-based proxy. This proxy implementation optimises

the required RTTs, which is apparent compared to the

SOCKS5 proxy. The notation of the setup time for a request

passing through SOCKS6 proxy is TSOCKS6, and we approx-

imate it with:

TSOCKS6 ≈ 3RTTCP+2RTTPS+tredirector+tproxy+tserver,
(9)

where tproxy is the time for the SOCKS6 proxy to process an

upcoming forwarding request.

Implementing different proxies implies a different overhead

compared to a no-proxy scenario. The evaluation of the two

implementations will be detailed in the next section.

VI. EVALUATION

To determine which implementation should be adopted, and

under which conditions, we benchmark the two approaches

(Sec. IV) to evaluate their performance in terms of time

overhead and the rate of processed transactions. In our ex-

periments, we fully containerise and automate the benchmark

setup in Docker containers for reproducible results. Our bench-

mark implementation is publicly available online 3.

3https://github.com/epi-project/proxy-bench
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Fig. 9: A sequence diagram showing the communication steps

in a scenario including SOCKS6-based proxy.

A. Experiment topologies

We run three different applications containers: client, web

server and proxy. We generate requests traffic from the client

to the server passing through the proxy, and use the no-proxy

scenario as the baseline for this benchmark, using two network

tools: httping [12] and wrk [13]. We are interested in the

additional time that packets take to go through the proxy and

give it the Δt notation.

In an attempt to have a controlled environment with repro-

ducible results, we dockerise everything and run it all the ap-

plication components on a single VM machine. We configure

different network configuration combinations; we accomplish

this by varying the distance/latency between containers using

tc. By doing this, we mimic a real network with changing

distances between nodes.

We run several network typologies scenarios on a basic

Debian version 10 VMs, with 2 cores, 2 GB of RAM, and 20

GB of storage. In one topology, the proxy is placed between

the client and the server; we call this the proxy-in-between
topology. In a second topology, the proxy is placed at a

location that is equidistant from client and server; we call this

the triangular topology. The two types of setup are illustrated

in Fig. 10. Namely, CP represents the client-proxy distance,

PS the proxy-server distance, and CS the client-server distance

(as defined in Sec. V).

The tc tool, a network control utility for the Linux kernel,

is used to simulate different distances between the nodes to

evaluate the effect of varying delay on the time overhead.

Table I shows the six different latency configurations we have

adopted.

Fig. 10: The different network distance/latency typologies with

C representing client node, P the proxy node, and S the server

node.

Topology Name CP (ms) PS (ms) CS (ms)

Proxy-in-between
DOCKER 1 5 5 10
DOCKER 2 5 10 15
DOCKER 3 10 5 15

Triangular
DOCKER 4 1 1 1
DOCKER 5 5 5 5
DOCKER 6 10 10 10

TABLE I: The six network configurations used in our experi-

ments and the respective latencies; three topologies (1-3) are

related to proxy-in-between setup and three topologies (4-6)

are related to the triangular setup

B. Proxy-in-between topology experiments

In the first experiment, we place the proxy in between

and on the direct path of C and S, and simulate distance

differences between the nodes according to the values in

Table I: DOCKER1, DOCKER2, DOCKER3. We instantiate

the client, proxy, and server containers on a VM and we

generate HTTP traffic via the httping tool. Then, we measure

the average round-trip time of 120 consecutive requests.

The results of the measured round-trip time (ms) and the

associated overhead Δt are plotted in Fig. 11: 11a and 11b,

respectively. As the total distance between client and server

increases, so does the total round trip time (Fig. 11a).

In Fig. 11b the observed Δt of NGINX is < 1ms when it

is deployed in between the client and server. If the SOCKS6

proxy is halfway of the distance, then the Δt is � 6ms. As

for SOCKS5 proxy, Δt is � 12ms and it increases rapidly

with the CP distance.

C. Triangular topology experiments

In this experiment, we simulate equidistant triangular

topologies with CP/PS/CS values show in Table I: DOCKER

4, DOCKER5, and DOCKER6.

The plots in Fig. 12 shows the resulting round-trip time

and Δt with 12a and 12b, respectively. We observe that the

resulting overhead of the proxies implementations increases

with distance. The overhead values are higher than the values

recorded with the proxy-in-between scenarios, ranging from 2

ms to 21 ms for NGINX, from 5 ms to 42 ms for SOCKS5,

and 4 ms to 32 ms for SOCKS6 (as shown in 12b).
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(a) The average of client to server 120 consecutive requests round-trip time
(ms) with changing configured distances between nodes.

(b) The overhead of Δt (ms) of different proxy implementations compared to
no proxy with changing configured distances.

Fig. 11: The variation of round-trip time (ms) and overhead

Δt (ms) of proxied HTTPING requests with proxy-in-between

network topologies.

D. Rate of processed transactions

To test the rate of processed transactions of each proxy

implementation we set up a third experiment. In this case, we

utilise 3 different VMs each running an application container

(client—proxy—server). The reason that we don’t containerise

this setup is that with the wrk tool, applications will compete

for resources and we’ll end up with lower rate results.

Fig. 13 shows the rate of processed transactions of each

proxy implementation measured with wrk as the number of

concurrent HTTP connections increase (Fig. 13a) and the

reduction of this rate compared to the no-proxy output (Fig.

13b). The network setup behind this plot simulates no varying

distances.

Similar to the no-proxy plot, the rate of processed requests

of all three implementations increases with the increasing

number of connections, but it flattens it hits 8 concurrent con-

nections. That might be explained due to the proxy reaching

a bottleneck of resources consumption.

The bottleneck is further reflected in the second plot in Fig.

13b, the reduction of the rate compared to the no-proxy rate

decreases initially to show that processing rate of the three

proxy implementations is growing at a higher rate. When we

reach 8 concurrent connections, the processing rate flattens out

while the no-proxy rate is still increasing. Subsequently, The

proxies’ reduction rate starts to slightly increase afterwards.

We can concur from this plot that next to no-proxy, the

SOCKS6 approach results with the highest processing rate

with increasing connections. On the other hand, the SOCKS5

(a) The average of client to server 120 consecutive requests round-trip time
(ms) generated via HTTPING with changing configured distances between

nodes.

(b) The overhead of Δt (ms) of different proxy implementations compared to
no proxy with changing configured distances.

Fig. 12: The round-trip time (ms) and overhead Δt (ms) of

proxied HTTPING requests with triangular network topolo-

gies.

approach has the lowest processing rate and doesn’t scale as

well compared to SOCKS6 and NGINX.

E. Discussion

In Fig. 11b The proxies’ overhead increases with the in-

creasing distance between the proxy and the client, while it

does not noticeably differ with increasing distance between

proxy and server. Such a behaviour is logical and expected

given the contributions to the total overhead of the various

components as explained in Sec. V.

While in Fig. 12b we notice that the NGINX proxy performs

better in terms of Δt in both setups. However, the SOCKS-

based proxies imply more overhead, which is expected since

it needs more authentication steps during connection setup

(handshakes), while the NGINX proxy simply forwards re-

quests.

The overhead resulting from these experiments are varying

according to Δt = TNGINX|SOCKS5|SOCKS6 − TNo−proxy .

This explains the smaller overhead in the proxy-in-between

topologies that implies higher RTTCS time compared to

triangular topologies.

Experiments in Sec. VI-B and VI-C show that the placement

of the proxy node has a noticeable effect in terms of overhead.

Moreover, it is proven to be a way of minimising the inevitable

latency of introducing proxies.
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(a) The rate of processed transactions resulting via wrk of different proxy
implementations with increasing concurrent connections.

(b) The reduction of processed requests per second of different proxy
implementations compared to no-proxy.

Fig. 13: The number of HTTP requests that are processed per

second (rps) and the associated reduction with the increasing

number of concurrent requests.

VII. COMPARISON

There are other evaluation performance parameters of each

proxy that we want to consider. Here we look at the port

scalability, optimisation, portability and reconfiguration, dy-

namicity, complexity and security.

Table II shows the comparison between different proxy im-

plementations according to the previously defined parameters.

Parameters NGINX SOCKS5 SOCKS6

Δt �
Processing rate �
Port scalability � �
Reconfiguration � �

Dynamicity � �
Security � �

TABLE II: The comparison between different proxy imple-

mentations according to six performance parameters; where

the �represents an advantage over other proxies.

A. Port scalability

Due to their different mechanisms, different numbers of

ports need to be open on a proxy server. As an example, we

need one port for each proxy for SOCKS(5|6), while one

port per nodes pair of nodes for NGINX. This reflects on the

hardware scalability of the proxy with higher requesting nodes.

B. Optimisation

NGINX is optimised for HTTP (more optimised in general

as well), while SOCKS works on top of the TCP/UDP trans-

port layer. This is reflected in the results of the experiments

illustrated in Fig. 12 and 11.

C. Reconfiguration

NGINX is configured through configuration files, and

subsequently, reconfiguration of the service might require

a restart (downtime might be avoided through canary

(re)deployment). On the other hand, SOCKS configura-

tion is dynamic/programmable, and it is updateable without

restart/downtime, e.g. database entry update.

D. Dynamicity

NGINX paths are static (based on the incoming port used),

thus BF chains are static as well. Separate BF chains (x

containers) needs to be deployed per node pair, thus scaling is

also done per node pair BF chain. With SOCKS the destination

is communicated as part of the connection setup, thus BF

containers can remain stateless (assuming a BF implements

a SOCKS interface). Meaning that, one BF container can

be part of multiple BF chains e.g. through dynamic function

composition g(f(x)) based on SOCKS chaining. Scaling can

be done per BF across different nodes pair paths. (i.e. scale

per number of connections to the proxy, instead of the number

of connections per nodes pair.)

E. Security

From a security perspective, SOCKS authentication is part

of the protocol. Whitelist, mutual TLS, and/or shared secret

are supported. That is not part of SOCKS but possible, and

handled by redirector component. On the other hand, with

NGINX whitelist and mutual TLS are supported, but it is not

transparent to client app.

VIII. RELATED WORK

Different redirection tools have been implemented in the

past to fulfil a number of different purposes. In [14] they

propose a dynamic hybrid honeypot system based on a trans-

parent traffic redirection mechanism to address the identical

fingerprint problem. They implement the Honeybrid gateway

to capture data and control traffic. The Honeybrid gateway

includes a Decision Engine and a Redirection Engine, which

are in charge of orchestrating the filtering and the redirection

between frontends and backends. The Decision Engine is used

to select interesting traffic, and the Redirection Engine is used

to transparently redirect the traffic. They employ a traditional

TCP proxy that applies the TCP relay mechanism. In our case,

redirection relies on the logic area generator, which has deep

knowledge and integration with the policy engine; the Decision

Engine in [14] would not be easy to adopt. Likewise, the

Redirection Engine provides also orchestration function, which

in the EPIF are already integral components of the application

and infrastructure orchestrators.
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For similar security reasons to ours, [15] employs a

Subscriber Traffic Redirection software to redirect HTTPS

requests via a redirection server. Similar to our proposed

implementation, the server redirects traffic to a previously

configured web server with a Secure Sockets Layer certificate

(SSL). This tool is evaluated according to security parameters,

such as security against DDoS attacks. In our case though, we

need a proxy that is capable to redirect all kinds of application

traffic, not only HTTPS.
Finally, [16] evaluates high availability of two proxy im-

plementations: reverse proxy and SDN-based proxy, based on

OpenFlow. The conclusion is that the SDN proxy proves to

be robust against link failure due to its ability to monitor

network interfaces. The idea of using an SDN-based proxy

is certainly relavent in our effort to exploit programmable

infrastructures. Still, OpenFlow is not any longer the main

SDN technology, and it must be noted that most of the current

EPI infrastructures would not have OpenFlow devices running

in them. We foresee to evaluate data plane programmable

solutions such as P4.

IX. CONCLUSION & FUTURE WORK

Interception and redirection of traffic is a core feature of

the EPIF. In this paper, we evaluated and benchmarked two

different approaches; an NGINX-based reverse proxy method

and a SOCKS-based method. We determined that the overhead

of the EPIF proxies differs in the various implementations,

and it relates directly to the positioning of the proxy within a

network topology. Other than overhead, we also considered

different performance parameters in evaluating the proxies

implementations. We can conclude that the SOCKS6-based

proxy offers the highest processing rate, and it supports all

traffic type redirection. In addition to that, SOCKS proxies

have advantages in terms of reconfiguration, dynamicity, se-

curity, and scales better in employing open ports. On the

other hand, the NGINX-based approach processes forwarding

requests with lower overhead.
Subsequently, to make a design decision on which proxy

implementation should be used, we need to consider the

type of application being served. Namely, the choice depends

on the application requirements and the specific relevance

of performance parameters. For example, if the application

is time-critical and would require minimal overhead, then

NGINX is the obvious choice. A data streaming application

would instead benefit from a SOCKS6-based proxy because

of the higher processing rate.
In our future work, we will be implementing more EPIF

functionalities like BF chaining and offering uniform inter-

faces of bridging functions. This would enable programmabil-

ity and add on the initial client infrastructure capabilities. Our

focus will therefore be put on the extra plug-ins needed in the

redirection tools needed for BF’s chaining. Finally, we aim to

deploy this with real test-beds and utilise this by introducing

real health data and different archetypes.
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