## EPI RQ4 Research Update: Privacy Preserving Distributed Machine Learning

# Saba Amiri

## s.amiri@uva.nl

Supervisor: Adam Belloum

Promoters: Sander Klous, Leon Gommans

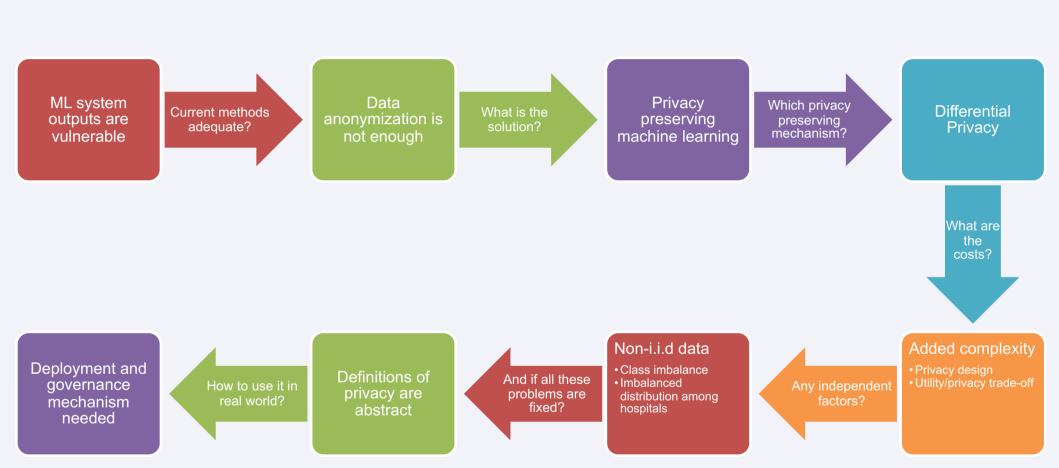
Multiscale Networked Systems Group

1 July 2021





## Lessons Learned



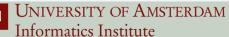


## Recap



3

- Differentially private compressive federated learning
  - Simple federated learning setup
  - > Add differential privacy through compression mechanism necessary due to constrained communication channel
- Differentially private synthetic data generation
  - Distributed datasets
  - Privacy preserving
  - Non-i.i.d data distribution among nodes
  - Skewed/imbalanced dataset
- Impact of non-i.i.d distribution on the performance of machine learning models
  - Different federated learning fusion schemes
  - Different non-i.i.d data distribution schemes
  - Impact of differential privacy
- Distributed learning pipeline
  - Collaboration with Jamila, Onno on connection of RQ4 with RQ6/BRANE
  - Research on using Vantage6<sup>[1]</sup> as the distributed machine learning infrastructure (as opposed to more generic solutions, e.g. managing the distributed pipeline through use of Pytorch distributed)



# **Results – Data Distribution**

# ××××

### Toy example

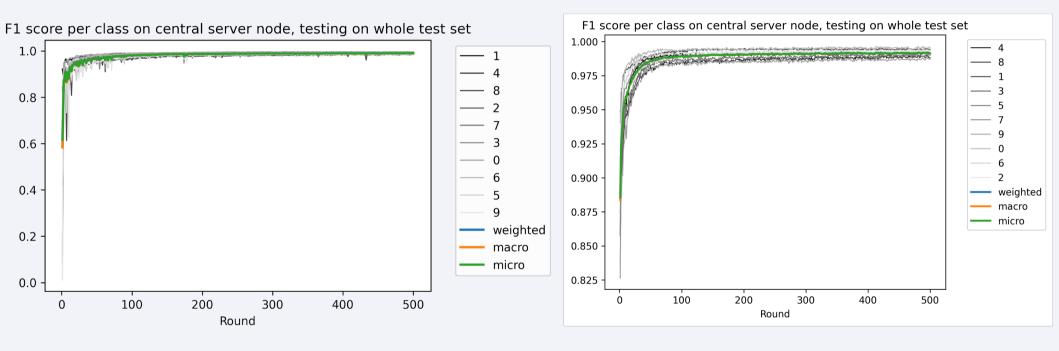
- Dataset with ten classes
- Data distributed among 5 different hospitals
- Different distribution schemes being researched
  - > Fully i.i.d (each of the 5 hospitals have the same number of each of the 10 classes)
  - Fully non-i.i.d (All the samples of each class reside on <u>only one</u> node)
  - Partial non-i.i.d (samples from 5 of the classes are distributed identically among 5 hospitals, the next 5 class each reside only on one hospitals)
  - Statistical distribution (all hospitals have some samples of all classes, the distribution of samples among nodes follows a statistical distribution, e.g. Gaussian)

#### Metrics

- Machine learning utility
- Class-conditional utility
- Fairness (utility and/or imbalance in under-represented classes)

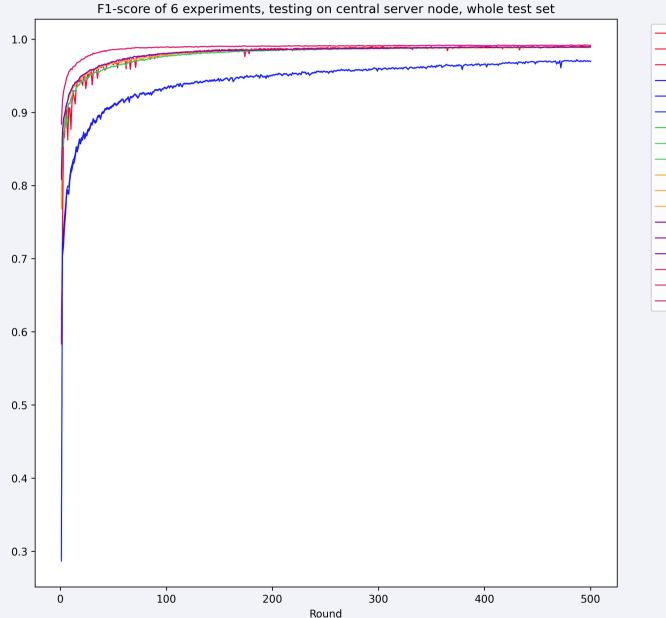


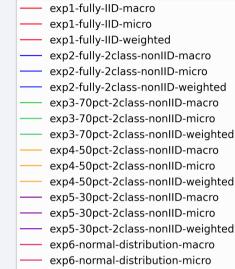




# Results – Data Distribution, Overall







— exp6-normal-distribution-weighted







- Generate privacy preserving synthetic data from original data
- On tabular data
- Preserve statistical properties
- Maintain machine learning efficacy
- Distributed environment
- No i.i.d assumptions about data distribution
- Differentially private with an acceptable privacy budget
- Semantic integrity





## Results – PPSDG, Machine Learning Efficacy

Ň

- Dataset: Adult income dataset
  - Class label (Income): ">50k", "<50k"</p>
- > We trained 3 baseline generative models on the dataset
- > We generated 3 synthetic datasets using the 3 generative models
- > We designed a simple classification model to predict income
- > We trained the classification model 4 times using original dataset and 3 synthetic datasets

| Dataset     | SDG Model | Accuracy % |
|-------------|-----------|------------|
| Original    | -         | 83.6       |
| Synthetic 1 | GAN       | 82.1       |
| Synthetic 2 | GAN       | 82.8       |
| Synthetic 3 | GAN       | 98         |



- Dataset: Adult income dataset
  - Class label (Income): ">50k", "<50k"</p>
- We trained 3 baseline generative models on the dataset
- > We generated 3 synthetic datasets using the 3 generative models
- We designed a simple classification model to predict income
- > We trained the classification model 4 times using original dataset and 3 synthetic datasets

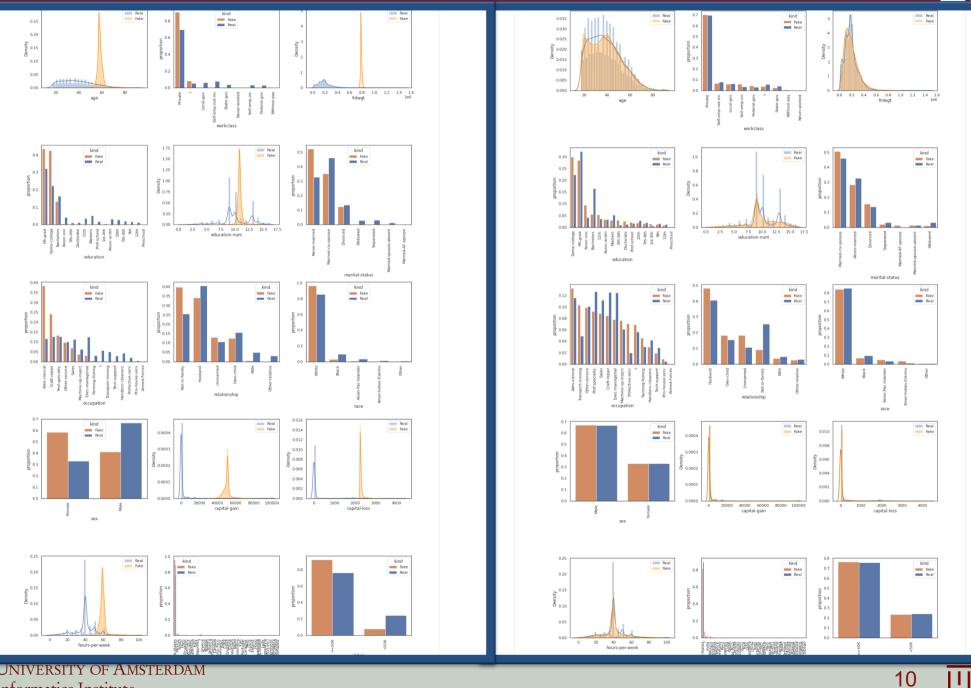
|     | age | workclass            | fnlwgt | education        | education-<br>num | marital-<br>status     | occupation            | relationship       | race                       | sex    | capital-<br>gain | capital-<br>loss | hours-<br>per-<br>week | native-<br>country | label |
|-----|-----|----------------------|--------|------------------|-------------------|------------------------|-----------------------|--------------------|----------------------------|--------|------------------|------------------|------------------------|--------------------|-------|
| 0   | 17  | Private              | 124130 | Some-<br>college | 9                 | Separated              | Protective-<br>serv   | Not-in-<br>family  | White                      | Male   | 30               | 0                | 40                     | Haiti              | <=50K |
| 1   | 26  | Private              | 168914 | HS-grad          | 10                | Married-<br>civ-spouse | Handlers-<br>cleaners | Husband            | Asian-<br>Pac-<br>Islander | Female | 21               | 1                | 39                     | Yugoslavia         | <=50K |
| 2   | 33  | Self-emp-<br>not-inc | 218757 | HS-grad          | 11                | Married-<br>civ-spouse | Machine-<br>op-inspct | Not-in-<br>family  | White                      | Male   | 29               | 0                | 24                     | United-<br>States  | >50K  |
| 3   | 62  | Self-emp-<br>not-inc | 558635 | Bachelors        | 9                 | Never-<br>married      | Prof-<br>specialty    | Wife               | White                      | Male   | 51               | 1                | 40                     | United-<br>States  | <=50K |
| 4   | 27  | ?                    | 143612 | Masters          | 13                | Separated              | Priv-house-<br>serv   | Unmarried          | White                      | Male   | 89               | -2               | 40                     | United-<br>States  | <=50K |
|     |     |                      |        |                  |                   |                        |                       |                    |                            |        |                  |                  |                        |                    |       |
| 995 | 44  | Private              | 179779 | HS-grad          | 9                 | Never-<br>married      | Adm-clerical          | Husband            | White                      | Male   | 2                | -3               | 40                     | United-<br>States  | <=50K |
| 996 | 28  | Self-emp-<br>not-inc | 180882 | Bachelors        | 11                | Married-<br>civ-spouse | Adm-clerical          | Other-<br>relative | Black                      | Female | 43               | 5                | 40                     | United-<br>States  | <=50K |
| 997 | 15  | Private              | 166548 | Bachelors        | 6                 | Married-<br>civ-spouse | Protective-<br>serv   | Other-<br>relative | White                      | Female | 23               | 7                | 38                     | United-<br>States  | <=50K |
| 998 | 19  | Private              | 158057 | Doctorate        | 8                 | Never-<br>married      | Other-<br>service     | Not-in-<br>family  | White                      | Male   | 9                | -1               | 40                     | United-<br>States  | >50K  |
| 999 | 19  | Private              | 119228 | Bachelors        | 13                | Divorced               | Other-<br>service     | Unmarried          | White                      | Male   | 69               | 5                | 40                     | United-<br>States  | <=50K |

Ŵ

## Results – PPSDG, Shortcomings in Baseline, 2 models



5



Informatics Institute

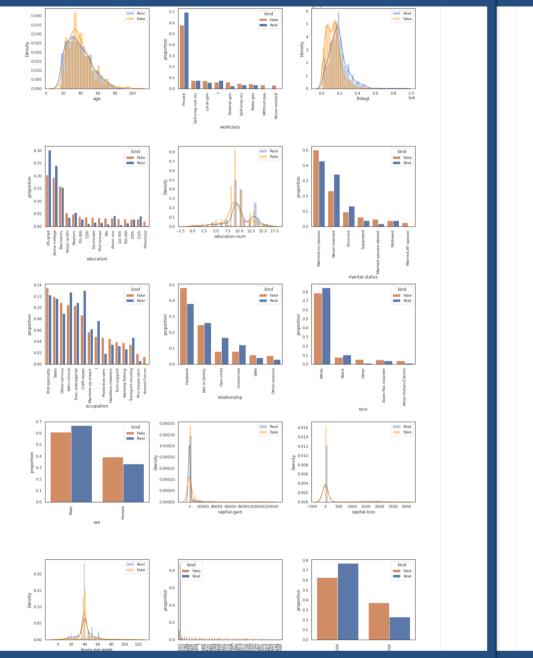
Ŵ

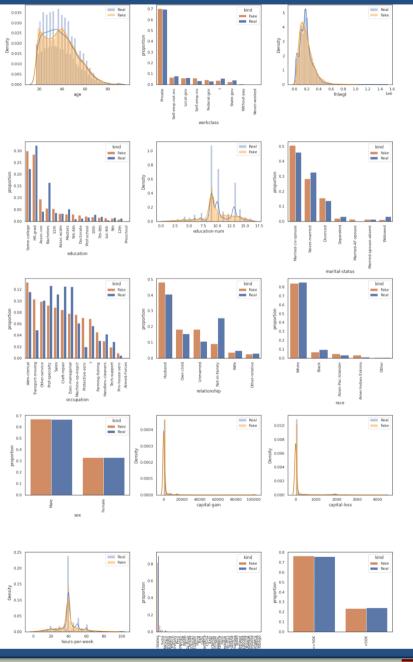
## Results – PPSDG, Shortcomings in Baseline, Same Model, Skewed Data



5

11





UNIVERSITY OF AMSTERDAM Informatics Institute

Ň

# **Future Works**



#### > [1] August/September 2021

- > Finish phase 1 of research on effect of non-i.i.d distribution in federated learning, submit paper
- Finish phase 1 of research on PPSDG, submit paper
- > Make the codebase public

#### [2] December 2021/January/2022

- > Finish phase 2 of research on PPSDG, submit paper
- > Apply results from phase 1 of 'non-i.i.d' research in PPSDG (either the same research or separate one)
- > TBD
  - Link with infrastructure/BRANE
  - Extend collaboration with Vantage6 if feasible



# Employing Results in Practice



## What we can offer right now

- > Measure the privacy risks, vulnerabilities of current machine learning systems
- Pipeline to perform federated learning on distributed private datasets
- > Train a machine learning model in a privacy preserving manner (differentially private)
- Generate privacy preserving synthetic data (conditioned on being analyzed)
- What we will be able to offer in the future
  - Generate privacy preserving synthetic data with theoretical guarantees
  - Measurement and analysis of fairness and robustness of machine learning models against different data distribution scenarios
- How do we test our methods?
  - Datasets
    - Image datasets
      - □ MNIST, CIFAR-10
    - Tabular datasets (non-medical)
      - adult, census, covertype, intrusion and news
    - □ Tabular datasets (medical)
      - □ MIMIC-III
  - Interpretation, domain expertise
    - □ Following standard in ML research on ML-related aspects of the work
    - Following already existing research for domain-specific interpretation

# Tailoring Results for EPI Use-Cases

- Access to the data
- Domain expertise
- Practical use-case
- Resources
- Evaluation framework
- Plan to incorporate results in practice
- Update standards on privacy in machine learning
- Extend differential privacy to any data analysis method (going beyond anonymization)



## Thank you!

#### My direct collaborators in chronological order

- Serge van Haag (AI)
- Boris Egelie (AI)
- Tidi Stamatiou (AI)
- Carlijn Nijhuis (Computer Science)
- Mike Schouw (Computer Science)
- Jetske Beks (Computer Science)
- Willemijn Beks (Computer Science)
- Yu Wang (Computer Science)
- Simon Tokloth (Data Science)

