- >I<COMPLEX
Xl S \ — CYBER
% INFRASTRUCTURE

Policy-Driven System Design

Mostafa Mohajeri

University of Amsterdam

£<'gl,\ll(s

Dala

DL4LD consortium meeting

Nov 25,2021
L] x
” TKI DINALOG i T H A L E S E BiZdesign cwna evo ‘ pre X Gemeente
*ﬁ ' é onn . x Amsterdam UNIVERSITEIT VAN AMSTERDAM
NWo. AIRFRANCE KLM ORACLE X TNO 52

connecting busineas end science

My PhD Research

Design and develop a computational environment for policy-making
Exercising policy design as part of system design
Focus: Utilizing agent-based models of actors

System/Policy
Model

Modifying Model
System/Policy execution

Utility Analysis Trace Analysis

Violation to
Regulations

Executable model of Agents

e AgentScript Cross-Compiler framework (ASC2)

e A multi-agent system (MAS) framework to model the actors
o Anagent-oriented programming language
o A compiler for the language

o Arun-time for the agents

Target System Attributes

System
Under
Design

—[Socio-Technical]7

Regulated

—

Data-Intensive

—

Open

L L

—

Software Actors: service providers, routers

Social Actor: organizations

Regulated Entities: Actors, Groups of Actors and the System (as whole)

Regulator Entities: Monitors, Enforcers, Auditors

(not data-sharing) All communications and their purpose are important

Existence of external world affecting and getting affected

Regulated Data-intensive
Socio-Technical Open System

actors

Dynamic

Al

-| regulators

Regulations/Policies

Dynamic policy changes affect the behavior of the regulator actors which propagates to the system behavior

Regulations/Policies dictate the behavior of regulator actors which changes the behavior of the system

Example Design Cycle

System Spec ——

Physical world
(Infrastructure)

Social World
(Actors)

Institutional world
(Norms)

—— Network

Data Owners
Data Controllers
Data Subjects
Data Consumers

Policies
— GDPR, Contracts,
Internal Policies

Communication
N |
Protocol

MAS framework

. Norms framework

C) D) (@
System Design Policy Design
Artifacts Artifacts

Scenarios

—> Result Analysis

Re-Design

An Example Case: LICCAM

e Legal Interventions for Connected and Cooperative Automated Mobility
e Design: Applying the mentioned method in System/Policy design cycle
e Theoutput:

o Design artifacts

o Policy artifacts

o Do we want this system?

Initial System Spec

| got this warrant, you okay with it?

[eo]

YES / NO v

Y

can we intervene?——4————>|

OEM

Normative Oracle
UVA

(—7ﬁ hYES / NO—5

with warrant I

Enforcing Agent |«

=

Highway DT
Simulation of future
behaviour

Monitoring Agent

please enforce!

feedback loop is helpful, to increase priority

(External)

\

T A

L ifyes, brake!—@

80km/h, every 5s +20km/h

80km/h

Initial ASC2 Model

+!'try intervention (Id,Car, Speed,Confidence) : Speed >= 120 =>
T = #java.time.Instant.now () .getEpochSecond;

+case (Id,Car, Speed, Confidence, T) ;
#coms.achieve ("enforcer",intervene (Id, Car, Speed, Confidence)) .

-\

enforcer monitor

sensor

set_speedeet_speed ’—sense_speed

Environment: A simplistic road

We can execute scenarios to generate design artifacts and verify the system

enfo’cer m

'

!register(jFtOESPSTW) |

!set_speed(150)

setting speed to:150

PP, S

PR P p—

lalert(car1,150,1.0)

Speed > 120: Intervention Required

PR, SeyR Ss ey [P

¥

lintervene(carl_1,carl,150,1.0)

PR O g g O e

Intervention: set_speed(90)

-
' OEM:oeml
| T

b
'
'+ !give_warrant(carl_1,carl,oeml, monitor,set_speed(90))
L -
. >
?confirm_alert(carl_1,carl) >
= '
true :
' 'I
!serve_warrant(carl_1,warrant(carl,oeml,set_speed(90),enforcer,oracle,oracle_1)) > :
e ' '
+intervention_validated(carl_1) : ‘
- ' .
' 1
?intervention_access(carl,warrant(carl,oeml,set_speed(90),enforcer,oracle,oracle_1)) '
U '
7.9 1
‘ ?validate_warrant(warrant(carl,oeml,set_speed(90),enforcer,oracle,oracle_1)) :
' '
, true "

e
<

e eelinoacaaaaonoge

'
1
[
i
'
'
1
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
1
'
'
1
'
1
'
'
'
'

?execute_command(set_speed(90),jFtOE8P5TW)

\

]

setting speed t0:90

Detected: carl, Speed:90

T o i I
AP e [e P

REREEEET ST

speed_changed(90,90)

0 SO . R R PR [

executed_command(set_speed(90),speed_changed(90,90))

<.
-

!close_case(carl_1,speed_changed(90,90))

sensorl monitor enforcer oeml oracle

'
'
1
'
'
'
'
'

Decoupling the Environment

We had very limited and predictable scenarios

oracle

ASC2 is protocol agnostic

Traffic Simulation (WEBots, SUMO)

& =3

Execute less predictable scenarios

-

{08}

Example: The OEM
should execute an

POliCies vs. Contr0l intervention within a

timeframe if thereis a
warrant from oracle

I ——
Q D) (@)
4 System . .
yst Policy Design
< Design :
oracle Artifacts Artifacts
The system as a whole
should be verifiable <
against regulations by straightforward not so
using execution traces non-functional straightforward
requirement regulation
=
What is the
e incentive?
- What are the

punishments?

WY

Are violations observable?
Need extra monitoring?

Policies become part of the system design

{08}

Explicit (dynamic) Policies

Example 1: In normal /—\
situations, a warrant for » oracle
intervention should be

generated only if there is

an impending HIGH RISK
state

Some actors act based
on explicit norms,
specially the ones with
dynamic policies

Example 2: In extreme
situations (terrorist
attack), a warrant can be
created in any state

Q) (@)
S)éztierr? Policy Design — T X
9 Artifacts

Artifacts

To have a formal description of policies

Complex [
Decisions

No No

raffic Laws

-
Violation? Intervene?

Damage?

Damage?

Damage?

Do we want this system?

Usability: Automated Tests

oracle

eflint

circleci

Travis Cli

Seamless Integration and Testing
for MAS Engineering

Mostafa Mohajeri Parizi', Giovanni Sileno!, and Tom van Engers’

nformatics Institute, University of Amsterdam, Amsterdam, the Netherlands
{m.mohajeriparizi,g.sileno,t.m.vanengers}@uva.nl

Abstract. Testing undeniably plays a central role in the daily practice
of software engineering, and this explains why better and more efficient
libraries and services are continuously made available to developers and
designers. Could the MAS developers community similarly benefit from
utilizing state-of-the-art testing approaches? The paper investigates the

Run, Agent, Run! Architecture and
Benchmarking of Actor-Based Agents

Mostafa Mohajeri Parizi Giovanni Sileno
m.mohajeriparizi@uva.nl g.sileno@uva.nl
Informatics Institute, University of Amsterdam Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands Amsterdam, the Netherlands
Tom van Engers Sander Klous
vanengers@uva.nl s.klous@uva.nl
Informatics Institute, University of Amsterdam Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands Amsterdam, the Netherlands
Abstract 1 Introduction

The paper introduces an Agent-Oriented Programming (AOP)
framework based on the Belief-Desire-Intention (BDI) model
of agency. The novelty of this framework is in relying on

the Actor model, instantiating each intentional agent as an
ry i 9 L ¥y Tl loi L.

Agent-based models have an intuitive mapping to behavioural
descriptions, and for this reason are extensively used for
modeling and simulations of social systems. However, agent-

based programming is not only relevant for simulation. Data-
sl infs dicital 3 1 Lihis th,

Prototyping in real system

Real Road

N)
e Q SLavm | @
docker
f enforcer o
\ /U

- >I<COMPLEX
Xl S \ — CYBER
% INFRASTRUCTURE

Policy-Driven System Design

Mostafa Mohajeri

University of Amsterdam

£<'gl,\ll(s

Dala

DL4LD consortium meeting

Nov 25,2021
L] x
” TKI DINALOG i T H A L E S E BiZdesign cwna evo ‘ pre X Gemeente
*ﬁ ' é onn . x Amsterdam UNIVERSITEIT VAN AMSTERDAM
NWo. AIRFRANCE KLM ORACLE X TNO 52

connecting busineas end science

Thank You! :)

e Questions?

