
Policy-Driven System Design
Mostafa Mohajeri
University of Amsterdam

DL4LD consortium meeting
Nov 25, 2021

My PhD Research

● Design and develop a computational environment for policy-making
● Exercising policy design as part of system design
● Focus: Utilizing agent-based models of actors

System/Policy
Model

Model
execution

Trace Analysis

Violation to
Regulations

Utility Analysis

Modifying
System/Policy

Executable model of Agents

● AgentScript Cross-Compiler framework (ASC2)

● A multi-agent system (MAS) framework to model the actors

○ An agent-oriented programming language

○ A compiler for the language

○ A run-time for the agents

Target System Attributes

System
Under
Design

Socio-Technical

Regulated

Data-Intensive

Open

Software Actors: service providers, routers

Social Actor: organizations

Regulated Entities: Actors, Groups of Actors and the System (as whole)

Regulator Entities: Monitors, Enforcers, Auditors

(not data-sharing) All communications and their purpose are important

Existence of external world affecting and getting affected

Regulated Data-intensive
Socio-Technical Open System

actors

Regulations/Policies

(limited)
monitors

Dynamic

enforcers

Environment

regulators

Regulations/Policies dictate the behavior of regulator actors which changes the behavior of the system

Dynamic policy changes affect the behavior of the regulator actors which propagates to the system behavior

Norms framework

Communication
Protocol

Example Design Cycle

System Spec

MAS framework

Physical world
(Infrastructure)

Social World
(Actors)

Institutional world
(Norms)

Data Owners
Data Controllers
Data Subjects
Data Consumers

Policies
GDPR, Contracts,
Internal Policies

Network

Model
Execution
via
Scenarios

Result Analysis

Re-Design

Policy Design
Artifacts

System Design
Artifacts

An Example Case: LICCAM

● Legal Interventions for Connected and Cooperative Automated Mobility

● Design: Applying the mentioned method in System/Policy design cycle

● The output:

○ Design artifacts

○ Policy artifacts

○ Do we want this system?

Initial System Spec

Initial ASC2 Model

+!try_intervention(Id,Car,Speed,Confidence) : Speed >= 120 =>
 T = #java.time.Instant.now().getEpochSecond;
 +case(Id,Car,Speed,Confidence,T);
 #coms.achieve("enforcer",intervene(Id,Car,Speed,Confidence)).

We can execute scenarios to generate design artifacts and verify the system

Decoupling the Environment

Execute less predictable scenarios

Traffic Simulation (WEBots, SUMO)

ASC2 is protocol agnostic

We had very limited and predictable scenarios

Policies vs. Control

Policies become part of the system design

￼

The system as a whole
should be verifiable
against regulations by
using execution traces

Example: The OEM
should execute an
intervention within a
timeframe if there is a
warrant from oracle

Are violations observable?
Need extra monitoring?

Policy Design
Artifacts

System
Design
Artifacts

straightforward
non-functional
requirement

not so
straightforward
regulation

What is the
incentive?

What are the
punishments?

Explicit (dynamic) Policies

To have a formal description of policies

Some actors act based
on explicit norms,
specially the ones with
dynamic policies

￼

Example 1: In normal
situations, a warrant for
intervention should be
generated only if there is
an impending HIGH RISK
state

Example 2: In extreme
situations (terrorist
attack), a warrant can be
created in any state

Policy Design
Artifacts

System
Design
Artifacts

Complex
Decisions

Do we want this system?

Usability: Automated Tests

Prototyping in real system

Real Road

Policy-Driven System Design
Mostafa Mohajeri
University of Amsterdam

DL4LD consortium meeting
Nov 25, 2021

Thank You! :)

● Questions?

