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My position in DL4LD

● Design and develop a computational environment for policy-making
● To test the effects of regulations and policies
● Focus: Utilizing agent-based models of the social actors

Implementing 
(new) policies

Model 
execution

Trace analysis

Violation to 
regulations

Utility analysis

Modifying the 
policies



Overview

● Agent-based programming framework as part of the policy-making environment

● Aim of the framework:

○ Using MAS theory to model a social setting

■ Explainable autonomous agent

○ Verification of policies via model execution

● Practical requirements:

○ Scalable for large models

○ Productive for System/Policy designer

● Developing use cases as proof-of-concept

○ KYC case (SSPDDP)

○ Amsterdam Arena Mobility Case



The example use-case: Arena

● Example agents of the social system:

○ Operational Mobility Center (OMC)

○ Drivers

○ Public Transport

○ Police

○ Parkings

● Interact and Communicate

○ With other agents

○ With the environment



The example use-case: Arena

● Example Behavioral Norms and Policies of the system

○ Policies are being designed/tested

■ Data sharing policies

● What data can be shared with whom

● What data is needed to be shared

● For what purpose can data be used

■ Traffic routing policies

○ Assumptions of the model

■ Data sharing regulations (GDPR)

■ Data controllers’ policies

● Telecom companies, Public transport

■ Driver’s behaviors



Research Challenges

● How to create an executable and explainable models of agents?

● How to interface the agents with the institutional reality?

○ Reasoning about policies and regulations

● How to model the utilities of the agents?

○ Their preferred actions or state of the world

● How to make the model execution scalable?

○ Explainability often conflicts with scalability

● How to make the policy design/test cycle efficient?

○ Making the framework usable



Challenge 1: Executable model of Agents

● AgentScript Cross-Compiler framework (ASC2)

● A multi-agent system (MAS) framework to model the actors

○ A logic-based programming language

■ Readable and Verifiable

○ Intentional agents based on Belief-Desire-Intention (BDI) model

■ Transparency w.r.t. intention behind their actions

■ Feeds back to the policy-making



Challenge 2: Normative Agents

● Agents should reason about Norms

○ Regulations, Contracts, Policies

○ Reason about their permissions, powers and duties

○ Act based on them

○ Know when they are violating them

○ Know when another agent is violating them

● ASC2 is Interfaced with norm reasoning frameworks like eflint

○ We have already done a few example cases in the SSPDDP project



Challenge 3: Preferences

● Agents should act based on explicit preferences

○ Required for conflict resolution

○ Specially when policies are in conflict with each other

■ Cars should be distributed between parkings evenly

■ Cars should be routed in a way that creates the least traffic

● Explicit preferences make the decisions making transparent

○ Published paper: Integrating CP-Nets in Reactive BDI Agents, (PRIMA2019)

○ Published paper: Declarative Preferences in Reactive BDI Agents, (PRIMA2020)



Challenge 4: Scalability

● Explainability often has conflict with scalability

○ Current agent-based programming frameworks are not scalable enough for larger models

● ASC2 acts as a compiler 

● Translates the high-level language to executable programs

○ High-level language promotes readability and simplicity

○ Low-level language guarantees performance

■ Able to execute in a distributed setting

● Published paper: Run Agent, Run! Architecture and Benchmarking of Actor-Based Agents (AGERE@ETAPS2020)



Challenge 5: Productivity

● Testing and integration of the System model and policies can be cumbersome

○ Norm framework, ASC2, other 3rd party software and services

○ The focus should be on the design itself

● ASC2 can utilize online DevOps systems, e.g. TravisCI, CircleCI

○ To build-up a system from multiple repositories

○ Integrate with other system, e.g, norm framework, traffic simulators

○ Automatically Run tests and record the results

○ Keep the logs for future reference

● Published paper: Seamless integration and testing in MAS Engineering (EMAS@AAMAS2021)
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Thank you :)


