
Policy-Making Environment
Mostafa Mohajeri
University of Amsterdam

June 28th, 2021



My position in DL4LD

● Design and develop a computational environment for policy-making
● To test the effects of regulations and policies
● Focus: Utilizing agent-based models of the social actors

Implementing 
(new) policies

Model 
execution

Trace analysis

Violation to 
regulations

Utility analysis

Modifying the 
policies



Overview

● Agent-based programming framework as part of the policy-making environment

● Aim of the framework:

○ Using MAS theory to model a social setting

■ Explainable autonomous agent

○ Verification of policies via model execution

● Practical requirements:

○ Scalable for large models

○ Productive for System/Policy designer

● Developing use cases as proof-of-concept

○ KYC case (SSPDDP)

○ Amsterdam Arena Mobility Case



The example use-case: Arena

● Example agents of the social system:

○ Operational Mobility Center (OMC)

○ Drivers

○ Public Transport

○ Police

○ Parkings

● Interact and Communicate

○ With other agents

○ With the environment



The example use-case: Arena

● Example Behavioral Norms and Policies of the system

○ Policies are being designed/tested

■ Data sharing policies

● What data can be shared with whom

● What data is needed to be shared

● For what purpose can data be used

■ Traffic routing policies

○ Assumptions of the model

■ Data sharing regulations (GDPR)

■ Data controllers’ policies

● Telecom companies, Public transport

■ Driver’s behaviors



Research Challenges

● How to create an executable and explainable models of agents?

● How to interface the agents with the institutional reality?

○ Reasoning about policies and regulations

● How to model the utilities of the agents?

○ Their preferred actions or state of the world

● How to make the model execution scalable?

○ Explainability often conflicts with scalability

● How to make the policy design/test cycle efficient?

○ Making the framework usable



Challenge 1: Executable model of Agents

● AgentScript Cross-Compiler framework (ASC2)

● A multi-agent system (MAS) framework to model the actors

○ A logic-based programming language

■ Readable and Verifiable

○ Intentional agents based on Belief-Desire-Intention (BDI) model

■ Transparency w.r.t. intention behind their actions

■ Feeds back to the policy-making



Challenge 2: Normative Agents

● Agents should reason about Norms

○ Regulations, Contracts, Policies

○ Reason about their permissions, powers and duties

○ Act based on them

○ Know when they are violating them

○ Know when another agent is violating them

● ASC2 is Interfaced with norm reasoning frameworks like eflint

○ We have already done a few example cases in the SSPDDP project



Challenge 3: Preferences

● Agents should act based on explicit preferences

○ Required for conflict resolution

○ Specially when policies are in conflict with each other

■ Cars should be distributed between parkings evenly

■ Cars should be routed in a way that creates the least traffic

● Explicit preferences make the decisions making transparent

○ Published paper: Integrating CP-Nets in Reactive BDI Agents, (PRIMA2019)

○ Published paper: Declarative Preferences in Reactive BDI Agents, (PRIMA2020)



Challenge 4: Scalability

● Explainability often has conflict with scalability

○ Current agent-based programming frameworks are not scalable enough for larger models

● ASC2 acts as a compiler 

● Translates the high-level language to executable programs

○ High-level language promotes readability and simplicity

○ Low-level language guarantees performance

■ Able to execute in a distributed setting

● Published paper: Run Agent, Run! Architecture and Benchmarking of Actor-Based Agents (AGERE@ETAPS2020)



Challenge 5: Productivity

● Testing and integration of the System model and policies can be cumbersome

○ Norm framework, ASC2, other 3rd party software and services

○ The focus should be on the design itself

● ASC2 can utilize online DevOps systems, e.g. TravisCI, CircleCI

○ To build-up a system from multiple repositories

○ Integrate with other system, e.g, norm framework, traffic simulators

○ Automatically Run tests and record the results

○ Keep the logs for future reference

● Published paper: Seamless integration and testing in MAS Engineering (EMAS@AAMAS2021)



MAS framework

Norms framework

Messaging System

Traffic Sim

Example Design Cycle

System Spec

Physical world
(Infrastructure)

Social World
(Actors)

Institutional world
(Norms)

Drivers
OMC
Police
Parkings
Telecom companies

Preferences

Policies

Network

Road System 

Model Execution Result Analysis

Re-Design



Thank you :)


