Sustainable incentives for promoting compliant behaviors

Speaker: Xin Zhou

All rights reserved

DL4LD 28th June 2021

Systems and Networking Laboratory

clena

NSFIDES ORACLE

evofenedex.

Gemeente

X Amsterdam

Z BiZdesign

THALES

AIRFRANCE KLM

ŵ

NIVERSPECT VAN AMSTEREM

Prospect review

UvA - SNE

Informatics Institute III\5 💥

- Zhou X*, Cushing R*, Koning R, et al. Policy Enforcement for Secure and Trustworthy Data Sharing in Multi-domain Infrastructures[C]//2020 IEEE 14th International Conference on Big Data Science and Engineering (BigDataSE). IEEE, 2020: 104-113.
- Supercomputing Conference 2020
- ICT Open 2021

UvA - SNE

Policy enforcement and incentives

UvA - SNE

Informatics Institute 可S 米

Research question

UvA - SNE

- If the incentives can be implemented by **the third-party** in a sustainable way?
- **How long** it will take to drive all participants choose to cooperate?
- Also how does the incentives influence the accumulated wealth of the market?
- In this work, we try to explore the effect of incentives, considering its sustainability

Model

Mutual cooperation payoff	R
Mutual defection payoff	Р
Temptation payoff	Т
Sucker's payoff	\mathbf{S}

- Market with participants
- Compliant ⇔ cooperate (C)
- Non-compliant ⇔ defect (D)

Model

• Incentive mechanism

Table 1. Related parameters under different conditions						
Condition	Reward	Probability of reward	Fine	Probability of fine		
[C,C]	r_0 *	$P_0^r = R_{CC}$	_	_		
[C,D] or $[D,C]$	<i>r</i> ₁ *	$P_1^r = R_{CD}$	$ f_1 $ *	$P_1^f = F_{CD}$		
[D,D]	_	_	$ f_0 $ *	$P_0^f = F_{DD}$		

• Change the expected payoff of participants

	С	D		С	D
С	R	S	С	$R+R_{CC}$	S+R _{CD}
D	Т	Р	D	T - F_{CD}	\mathbf{P} - F_{DD}

UvA - SNE

Informatics Institute III\5 💥

Model

• Incentive mechanism

Table 1. Related parameters under different conditions						
Condition	Reward	Probability of reward	Fine		Probability of fine	
[C,C]	r_0 *	$P_0^r = R_{CC}$	_		_	
[C,D] or $[D,C]$	r_1 at	$P_1^r = R_{CD}$	$ f_1 $	*	$P_1^f = F_{CD}$	
[D,D]	_	_	$ f_0 $	*	$P_0^f = F_{DD}^{oD}$	

- Population: cooperators (*x*), defectors (*y*)
- Cost[1-3]: $E = x^2 \cdot M \cdot R_{CC} + xy \cdot M \cdot R_{CD} + \alpha \cdot M(xy \cdot F_{CD} + y^2 \cdot F_{DD})$
- Income[4,5]: $I = c_0 \cdot M + xy \cdot M \cdot F_{CD} + (y)^2 \cdot M \cdot F_{DD}$

Simulation experiments design for reward

	Table 1. Related parameters under different conditions					
Reward	Condition	Reward	Probability of rewa	ard Fine	Probability o	f fine
מ	[C,C]	R_{CC}		\overline{F}_{cc}	-	
R _{CD} ↑	[C, D] or $[D, C][D, D]$	– <i>R_{CD}</i>	_	F_{CD}	,)	
		R _{CC} R _{CD}	= 1, +0.25 = 2, +0.25 \cdots	5,3		
$\xrightarrow{} 0 \xrightarrow{} T-1 \xrightarrow{} T$	СС	С	D		С	D
Outcomes O NE ESS	S C	1(R)	-2(S)	С	2(R)	0(S)
Fig. 1. Equilibrium under rewarding p	olicy D	2(T)	0(P)	D	2(T)	0(P)
				•		

UvA - SNE

Informatics Institute III\5 💥

9

Simulation result: x^{100}

• Reward incentive (beta = 4)

UvA - SNE

Simulation result: *dynamic wealth*

• Reward incentive (beta = 4)

UvA - SNE

Informatics Institute $\Pi S \mathbb{X}$

Conclusions

- This work is our working paper
- Aim at efficiently and effectively motivate agents' compliant behaviors
- An complementary to our former work