
Policy Enforcement for Secure and Trustworthy
Data Sharing in Multi-domain Infrastructures

Xin Zhou∗
University of Amsterdam

Amsterdam, The Netherlands
x.zhou@uva.nl

Reginald Cushing†
University of Amsterdam

Amsterdam, The Netherlands
r.s.cushing@uva.nl

Ralph Koning
University of Amsterdam

Amsterdam, The Netherlands
r.koning@uva.nl

Adam Belloum
University of Amsterdam

Amsterdam, The Netherlands
a.s.z.belloum@uva.nl

Paola Grosso
University of Amsterdam

Amsterdam, The Netherlands
p.grosso@uva.nl

Sander Klous
KPMG

Amsterdam, The Nethrelands
klous.sander@kpmg.nl

Tom van Engers
University of Amsterdam

Amsterdam, The Netherlands
T.M.vanEngers@uva.nl

Cees de Laat
University of Amsterdam

Amsterdam, The Netherlands
delaat@uva.nl

Abstract—The push for data sharing and data processing
across organisational boundaries creates challenges at many
levels of the software stack. Data sharing and processing rely on
the participating parties agreeing on the permitted operations
and expressing them into actionable contracts and policies.
Converting these contracts and policies into an operational
infrastructure is still a matter of research and therefore begs the
question of how should the software stack and infrastructure look
like? What are the main building blocks of such an architecture?
In this paper, we investigate the architecture of a multi-domain
distributed architecture for policy driven application. The ar-
chitecture spans components from auditing policies to managing
network connections.

Index Terms—multi-domain data sharing, policy enforcement,
overlay network, trust distribution.

I. INTRODUCTION

Security of transferring data recently became an important
topic because of the value that is created from data. Therefore
protecting data from unauthorised parties becomes ever more
relevant [20, 7]. To guarantee the safety of data, many
policies and regulations have been designed for ruling the
collection, the sharing, and the transfer of data. However,
when collaborating with different individuals, departments or
organisations [11], the collaborators must be able to freely
share some information. Especially when the requirement for
timeliness is high, for example in emergency management,
the effective crisis response relies on efficient information
flow among the involved parties. Since polices may prohibit
the effective transmission of information [1], they may thus
hamper efficient flow of information between the collaborators.
This trade-off between protecting data and sharing it among
collaborators thus poses a practical problem [16]. However,
by sharing data in a system that can enforce the policies,
we may find a solution to this problem. Therefore, the main
questions we try to answer are: 1) How can we model policies
for use in multi-domain distributed infrastructures as a means?
2) How can we operationalise collaborative applications on

† and ∗ contributed equally to this paper. This research is funded by the
Dutch Science Foundation in Commit2Data program (grant no: 628.001.001).

decentralised infrastructures while maintaining strict policy
adherence and tight security controls?

To answer these questions, we use a real world use-case for
emergency management: ArenA. Based on this use-case, we
model the policies, and enforce them on a distributed multi-
domain infrastructure. The paper is structured as follows:
Section II defines the our conceptual model that introduces the
manifest, the auditor, and the components to map the policies
to executable actions. We then give a short introduction to
Jason (Sec. III) by which we realise the policy enforcement.
Our use-case and the implementation of its data transmission
auditing process is presented in Sec. IV.

After defining the auditing process, we show how this
process is integrated in our infrastructure actor architecture
in Sec. V. Finally, we discuss our proposed method and
implementation in Sec. VI and conclude.

II. CONCEPTUAL MODEL

To guarantee the data processing being monitored, queried,
and traced, we introduce the concept of manifest which
contains metadata of the dataset. In addition, to ensure the
designed data protection policies can be enforced by the
infrastructure, a conceptual model is proposed to translate
the policies into conditional statements and into executable
actions.

A. Manifest

The manifest contains metadata for each dataset, it describes
the included files/datasets, the controller domain, the permitted
recipients’ domain, the corresponding applied policies, the
sender domain, and a timestamp. This manifest will be gener-
ated by the data controller or by successfully transferring of the
dataset automatically. It serves for the auditors to ensure what
policies they should comply to with regard to a certain dataset,
also make the data operation can be traceable as it record when
and where does the dataset come from. The manifest must be
signed using the cryptographic key of the data controller to

prevent other parties from tampering with the policies or other
metadata.

Table I shows the fundamental structure of the manifest,
describes the included metadata, and gives examples of their
values.

Item Value

Datasets Set of files {Name of the file}
Eg: {File1,File2}

Controller
domain

The domain name of the data controller
Eg: Alice

Policies Set of policies {Name of the policy}
Eg:{Policy1, Policy2}

Sender
domain

The domain name of the data sender
Eg: Alice

Recipient
domain

The domain name of the recipient
Eg: Bob

Timestamp The timestamp of the manifest generation
Eg: 20161206 9:34:10

TABLE I
MANIFEST: METADATA OF DATASETS/FILES

B. Auditor

We will now introduce the concept of “auditor” into the
data transferring network, who has the operation history log,
and is able to check if the request of action is in line with the
designed policies to decide whether to authorise the request
or not. Only when the request is authorised by all the required
auditors it can be executed on the infrastructure. The auditor,
thus, guarantees the enforcement of the policies by using
the policy components mentioned in Sec. II-C. The natural
language policies can be translated into conditional statements
and executable actions, so that the auditors can compare,
review, and then output the decision to realise automatic
or semi-automatic auditing. We chose Jason [2, 17], one of
the most solid development environments for a belief-desire-
intention (BDI) [12, 14] based multi-agent system(MAS), to
model the auditing process. In Sec. IV-B, we elaborate the
concrete Jason implementation.

C. Policy components

Policies that apply to a certain dataset are regulated by the
data controller who controls the access and usage [13, 9].
These policies are used by the auditors who judge if the
requests comply with the policy. When the auditor approves
such a plan, it will be signed using a cryptographic key.

Fig. 1 presents the conceptual view of the policy which
contain authorisations, obligations, and environmental condi-
tions [15, 10].

Fig. 1. Conceptual view of the policy. It regulates the required auditors
for the “Obligation” in “Authorisation”. The “Obligation” can be vary with
“Environmental condition”. Thus the latter is also specified in the policy.
The clarification of purpose, period, and spatio-temporal granularity in the
“Operational condition” defines the rights and duties in a fine-grained way.

1) Authorisations: Authorisations are used to indicate the
auditors who are going to evaluate the plan/request and check
if the contained actions are allowed to be performed. For
example, the data controller can appoint auditor1 and auditor2
as authorised auditors for dataset1, which means that all the
requests that operate on dataset1 need the signatures given by
these two auditors before executing.

2) Obligations: Obligations are used to describe the
mandatory requirements to which the subject needs to adhere.
For example data controller “Alice” is obligated to transfer
“dataset1” to “Bob”.

3) Environment Conditions: The environmental conditions
describe the required environmental or system requirements
for a certain operation. For example, the obligation for “Alice”
to send “Bob” the “dataset1” exists only when “Bob” requests
or when an external event happens such as an emergency. If
this environmental pre-requirement is satisfied, the correspond-
ing obligation will be fulfilled, and the auditors can authorise
the request.

4) Operational Conditions: Operational conditions include
1) Conditions by Purpose [3], 2) Spatio-Temporal granular-
ity [3], and 3) Time period. The “purposes” is the aim or in-
tention of the operation, it can be “Commercial Use”, “Public
Safety Use”, and “Research Use”, etc. “Spatio-temporal granu-
larity” regulates the the frequency of the certain operation, like
”Secondly”, “Minutely”, “Hourly”, or “Daily”, etc. “Period”
determines how long will the operation being executed.

D. Example policy

A simple example of policy is shown in table III, where
“Alice” is obliged to send dataset to “Bob” when “Bob” re-
quests. The “Operational Conditions” regulate that the dataset
can only be used for research in 2020. When perform this obli-
gations, the authorisations from “Auditor 1” and “Auditor 2”
will be needed.

Now we introduced the manifest and the components of
policy translation, we can then explain how to apply them in
the auditing process. The following sections show how we use
these policies in the auditing process to establish secure and
trustworthy data sharing.

Components Value

<Authorizations> Auditor1 and Auditor2
<Obligation> Alice is obliged to send

dataset to Bob
<Environmental Condition> With the request from Bob
<Operational Conditions> <Purpose> Research

<Period> In 2020
<Spatio-temporal
granularity> By default

TABLE III
AN EXAMPLE OF A POLICY

III. AUDITING PROCESS MODELLING BY JASON

In Sec. II-B, we introduced the role of the “auditor”, and in
this section we show how we realise it using the AgentSpeak
language Jason. Jason is an AgentSpeak language, which can
model the interactions of agents within a specific environment.
The BDI model of agency embodied by AgentSpeak allows the
agents have the properties of autonomy, proactivity, reactivity,
and social ability. More concretely, all the agents have their
beliefs, which is information that the agent has about the
world; they also have desires which are the options that they
might choose; finally, the intentions are concrete actions or
plans that the agents decided to work towards. However, there
is a gap between desires and intentions, the reasoning process.
In this work, we apply the procedural reasoning system
(PRS) [19, 4] to make agents select between desires(options),
which is shown in Fig. 2. In Jason, the agent has access to
sensor data from the environment which acts as input to help
them form or update their beliefs and desires. For example,
the following excerpt of ’Alice”s belief base tells us that agent
’Alice’ has transferred ’dataset 1’ to ’Bob’:

1 // An example of belief
2 transfer (bob, dataset 1) [source(alice)]

Setting desires is also convenient in Jason:

1 // An example of desire
2 !announce(bob)
3 // Define the plan for this desire
4 +!announce(Agent) : transfer (Agent, Data)
5 <−
6 . print (Agent, ’ has already received ’ , Data) .

In this example, the desire(plan) is to announce that the
dataset has already been received, and then print this an-
nouncement out. As can be observed, a pre-condition is also
implied here, that the “Data” has already been transferred.
Only when the pre-conditions being satisfied, can the desire
become an intention and the concrete plan be executed.
Further, the pre-condition can not only be a belief, but also
can be a combination of a belief with a designed rule like:

1 // An example of rule
2 already receive (Data) :− transfer (Agent, Data) & Data ==

dataset 1

3 // Define the plan for this desire
4 +!announce(Agent) : already receive (Data)
5 <−
6 . print (Agent, ’ has already received dataset 1 . ’) .

Now the rule is: if “Agent” has already transferred
“dataset 1”, then “already received(Data)” will be TRUE.
Only then the desire will be activated and executed as an
intention and print out the announcement.

The main reason to choose Jason for modelling the auditing
process is that its features can realise the functions of audi-
tors well. There are two requirements for auditor modelling,
firstly, the auditor agents need to be reactive, which means
being responsive to changes in the environment. For example,
only when an auditor is required to give authorisation will
this auditor respond accordingly. Secondly, auditors should
be autonomous and have the ability to reason and judge
independently whether a request is in line with the policy to
generate the appropriate output. The BDI model and PRS make
it convenient for us to meet these requirements. The requests,
the action log, and the policies can be used as inputs to build
the agents’ beliefs. Then, the auditors will judge if they need
to audit the requests, if they need, they will further ensure
whether to give authorisations or not. These possible reactions
are agents’ desires, after the reasoning step, they can generate
the corresponding intentions. This process is the reflection of
BDI model.

In the PRS, the reasoning step is based on those mentioned
beliefs and designed rules. For example, choosing to give
authorisations or not is based on rules and beliefs. The rule
is comparing the operations in the requests with the policies
in their belief, if there is no conflict, then they will output
authorisations, and vice versa. The auditors are thus able to
reason and react in a proper way.

Accordingly, the BDI model together with PRS allows
agents to react autonomously, reactively, and reasonably ac-
cording to the concrete environment, making them suitable
to realise the audit functions. While Jason, this AgentSpeak
language, is based on the BDI architecture, we just need to
add beliefs and goals to agents, the interpreter will use this
belief base without explicit programming. The PRS of the
agent is done according to the plans that the agent has in
its plan library. We can thus realise the function of auditors
by Jason effectively.

Fig. 2. The procedural reasoning system (PRS). The PRS of agents enables
them to generate intentions from desires based on beliefs(rules), and thus react
to the environment autonomously.

In section Sec. IV-A, the concrete auditing process applying
Jason will be presented.

IV. THE DATA AUDITING PROCESS IN ARENA USE CASE

This work maps and enforces the data usage control policies
onto multi-domain infrastructures based on a concrete use case
which we refer to as the ÁrenA case. In this section, we will
first explain the ArenA case in Sec. IV-A, and then realise the
data transfer auditing process by Jason, the concrete modelling
process is presented in Sec. IV-B.

A. ArenA use case

Johan Cruijff ArenA1 is the main stadium of the Dutch
capital city of Amsterdam 2. In 2018, on the 26th of May,
during the outflow of more than 60.000 visitors from ArenA
around 23:30, there was a fatal accident that happened at the
pedestrian bridge that leads to parking lot P2, from where
someone has fallen off.

Since the accident happened during outflow, conditions
were urgent, there are several tasks that need to be done
simultaneously, 1) dispatch ambulances to the incident; 2)
divert traffic; 3) guiding outflow visitors; 4) clean the scene.
To deal with such major and complex incidents, emergency
workers from various departments such as the police, the traf-
fic, and the fire department, and the ArenA Operational Mobil-
ity Center(OMC) are expected rapidly exchange information.
More concretely, in this case, the police was responsible for
giving directions to emergency services and maintaining the
order during the incident; the traffic coordinators from Traffic
Management Operations Amsterdam(VMCA3) were in charge
of diverting traffic away from the incident; the stewards from
the ArenA were dispatched to re-route the 7000 pedestrians
who needed to cross the bridge to P2 towards their vehicles;
the firemen and policemen needed to clean the scene of the
accident. Thus, different departments cooperate in dealing with
this accident and may have to share data. However, each
department needs to remain in control over their own collected
data, and must be able to revoke access from collaborators
after the situation is under control.

1) Data transfer in the ArenA case: There are three data
flows between the departments as table V shows: 1) the
ground police informed the OMC about the incident; 2) OMC
informed the control room of ArenA at the first moment, so
that ArenA control room can dispatch the on-call ambulance
to the incident and rescue the wounded within 5 minutes; 3)
While re-routing traffic, the parking data from the OMC, who
owns real-time data of the parking lot, is transferred to the

1https://www.johancruijffArenA.nl/home.htm
2https://www.johancruijffArenA.nl/Stadion-omgeving/Spreekbeurt.htm
3https://nonoa.nl/projecten/verkeersmanagement-centrale-amsterdam

VMCA so that the VMCA can make decisions on how many
people are parked and still need to leave the area.

Data Sender Recipient Way

Alarm Ground police OMC Offline
Ambulance OMC Control room Offline
Parking lot data OMC VMCA Online

TABLE V
DATA FLOW IN THE ARENA CASE

The first two data flow completed offline, and are not involve
private data transferring, this work is thus focusing on the third
flow: real-time parking data transferring between the OMC to
the VMCA for traffic diversion.

2) Data formats: The raw data of the parking lot is in the
form of text, for example, the number of cars near various
exits and areas. The data is dynamic, thus needs to be shared
timely during the who traffic diversion period.

3) Data transfer policy: To ensure privacy and safety, the
data sharing process is supposed to be in line with certain
policies. More concretely, it has to be regulated clearly who is
able to use the private data for what purpose, when the data can
be used by the recipient, and what the permitted operations
are that can be applied on the data.. In the ArenA case, the
policy is described as:

“Under normal conditions, the parking data is private to
the OMC (data controller). However, when the VMCA will
require the parking data to divert traffic, then the OMC has the
obligation to satisfy this requirement and share the required
dataset.” By applying the policy concepts in Sec. II, this policy
can be transcribed as in table VII.

Components Value

<Authorisations> Auditor1 and Auditor2
<Obligation> OMC is obliged to send dataset to

the VMCA
<Environmental
Condition>

With the request from VMCA

<Operational
Conditions>

<Purpose> Traffic diversion
<Period> Until the diversion task is
lifted
<Spatio-temporal granularity>
By default

TABLE VII
AN EXAMPLE OF A POLICY

B. Data transfer auditing by Jason
The auditing process can be divided into two parts: 1)

sensing the environment which includes the input of requests
and policies; 2) reasoning and reacting which contains the
judgement process and the output of intentions.

1) Sensing the environment: The input for auditors includes
the requests that are pending for auditing and contain the
intended operations on the data objects. For each dataset,
its manifest regulates the policies that it should be obeyed.
Together with the pending request, the manifest and the
policies are the input of auditors in the form of beliefs:

1 // Pending request
2 request (parking1 ,omc,vmca, traffic diversion

,2020,07,06,23,45,0) ;
3 // manifest
4 data manifest (parking1 ,omc,policy 1, ,

,2020,07,06,23,45,0) ;
5 // Policies
6 policy (policy 1 , auditor2 , parking1 , omc, vmca,

traffic diversion) .
7 policy (policy 1 , auditor4 , parking1 , omc, vmca,

traffic diversion) .

As shown in the code, in the request, it represents “The
OMC will transfer dataset parking1 to the VMCA for traffic
diversion, and this request is generated at 23:45:00 on 6th
July, 2020”. In the manifest, it records the information of the
dataset “parking1”: it’s data controller is “OMC”, the policy
that should obeyed is “policy 1” and since this dataset is both
generated and saved at OMC there is no sender and recipient
specified at this moment. Except for the request and manifest,
the belief of auditors also include policies that record the
obligations and indicate which auditors are required to give
the authorisation. In the example, “policy 1” regulates that
“auditor 1” and “auditor 2” need to audit that the obligation,
that the “OMC” should send the “parking1” data to “VMCA”
for “traffic diversion” purpose, is properly enforced. Because
of these beliefs, only when the auditors’ names appears in the
policy, they will react and go to the next reasoning and judging
stage.

2) Reasoning and Reacting: In this stage, the auditors will
check if the “request” is in line with the policies, including
the data object, the sender, the recipient, purpose, and so on.
Then the auditor will judge if the request should be authorised
or not.

1 // Reasoning rule − Authorisation
2 authorisation (Dataset r ,Sender r , Recipient r ,Policy m,

Purpose r, auditor) :−
3 policy (Policy id , Pointed auditor , Data object ,Sender,

Recipient ,Purpose)
4 & Policy m == Policy id & auditor == Pointed auditor &

Dataset r == Data object & Sender r == Sender &
Recipient r == Recipient & Purpose r == Purpose.

5 // Reasoning rule− Refuse
6 refuse (Dataset r ,Sender r , Recipient r ,Policy m,Purpose r,

auditor) :−
7 policy (Policy id , Pointed auditor , Data object ,Sender,

Recipient ,Purpose)
8 & Policy m == Policy id & auditor == Pointed auditor
9 & (Dataset r \== Data object | Sender r \== Sender |

Recipient r \== Recipient | Purpose r \== Purpose).

Finally, the auditors will output if the request is authorised
or refused. The following code shows the output process:

1 // Output−Authorisation

2 + request auditors (Dataset ,Sender, Recipient , Policy ,Purpose)[
source(Agent)]:

3 .my name(Auditor Name)
4 & permission(Dataset ,Sender, Recipient , Policy ,Purpose,

Auditor Name)
5 <− .print(”This request has been authorised by ” ,

Auditor Name);
6 ! authorised (Dataset ,Sender, Recipient , Policy ,

Purpose,Auditor Name).
7 +! authorised (Dataset ,Sender, Recipient , Policy ,Purpose,

Auditor Name)
8 <− .broadcast(tell , authorised (Dataset ,Sender, Recipient ,

Policy ,Purpose,Auditor Name)).
9 // Output−Refuse

10 + request auditors (Dataset ,Sender, Recipient , Policy ,Purpose)[
source(Agent)]:

11 .my name(Auditor Name)
12 & refuse(Dataset ,Sender, Recipient , Policy ,Purpose,

Auditor Name)
13 <− .print(”This request has been refused by ” ,

Auditor Name);
14 ! refused (Dataset ,Sender, Recipient , Policy ,Purpose,

Auditor Name).
15 +!refused (Dataset ,Sender, Recipient , Policy ,Purpose,

Auditor Name)
16 <− .broadcast(tell , refused (Dataset ,Sender, Recipient ,

Policy ,Purpose,Auditor Name)).

Only when the request is authorised by all auditors, the
request can be executed. We show a simple authorized example
as following:

1 [auditor2] This request has been authorised by auditor2
2 [auditor4] This request has been authorised by auditor4
3 [actor] Request: Transfer parking1 from omc to vmca for

traffic diversion is authorised by auditor2
4 [actor] Request: Transfer parking1 from omc to vmca for

traffic diversion is authorised by auditor4
5 [actor] Request: transfer parking1 from omc to vmca for

traffic diversion can be executed .
6 [actor] No requests need to be audited .

To conclude, using this process, each request for certain
datasets will be checked by the auditors to guarantee that the
request is in line with the policies that apply to the dataset. And
only when all the auditors authorise the request the action can
be executed on the infrastructure. Thus, this process ensures
that the policy is enforced, that the operations are trustworthy,
and that the security of datasets is guaranteed. The concrete
description of the proposed infrastructure is elaborated in
Sec. V.

V. INFRASTRUCTURE

To operationalise applications and their accompanying poli-
cies we need an multi-domain infrastructure that brings to-
gether all the necessary parts including the compute re-
sources, networking capabilities, policy control, administrative
domains, monitoring and the actual applications. In order to
keep the infrastructure loosely coupled with different interact-
ing administrative domains, we model the infrastructure as a
set of actors whereby actors from different domains interact
with each other to run the applications. Actors are able to
communicate between each other using an overlay network.

The main purpose of a network overlay is to bring together
these actors. In network terminology actors are synonymous to
nodes on the network thus a network node can be considered
the implementation of an actor. For the rest of this paper actor
and node are used interchangeably.

Fig. 3. Actors as container nodes in a single administrative domain. Com-
munication between intra-actors is done on the local message bus while inter
domain actor communication is done through the border message router.

Being an overlay, all nodes are able to communicate with
each other and communication is governed by policies. For
effective communication between nodes an addressing scheme
is needed. The addressing has the responsibility of identifying
the domain, node and function so that any actor can call
functions on other actors from different domains. Addressing
on the network is done using public/private keys where the
public key is the address of the node and the private key is
only known to the node. The advantages of this cryptographic
addressing mechanism are twofold: First, nodes are not tied to
IP addresses and thus can be dynamically allocated to different
physical locations. Second, communications from nodes are
signed by their private keys which can be verified by any node
in the network since the address (public key) is used to verify
the signatures. The latter is important since a core function
of the network is creating an audit trail of activity on the
network and audits need to verify to whom communications
belong. Unlike other addressing schemes such as IP, these
cryptographic addresses are non-transferable i.e. the same
address can not be reused for different nodes at any point in
time which strengthens traceability since any actions signed
by a node can always be traced back to that node. Name
services are responsible to translate public key address to
actual IP endpoints to allow communication to proceed over
lower protocols. Another side effect feature of such addressing
is that nodes can sign each others keys creating a web of trust
between nodes that can easily be verified by following the
signatures.

Nodes on the network expose functions which can be called
by other nodes. The function routes takes the form:

hDPK/hAPK/mN/fN

where hDPK - hashDomainPublicKey is the public key of
the domain root level certificate. The domain root certificate
is used to sign actor addresses for a single domain this allows
any actor to verify to which domain an actor belongs. Hashing
the key allows us to minimise the length of the address which
is limited on most message queue systems. The domain public
key is also used as the border domain message router which
is responsible of routing messages to the different domains
based on the domain public key identifier.

hAPK - hashActorPublicKey is the address of any
node/actor on the network. This address is generated and
signed by the responsible domain. The key is hashed to
minimise the length of the routing key.

mN - moduleName is a categorisation defined by the actor.
The actor is responsible of structuring its own modules. This
information is published to the actor registry when a node is
deployed.

fN - functionName is the name given to a callable function
on the actor. Together with the module name, this provides a
unique way to call functions on actors. This information is
also stored in the actor registry so that is can be discoverable.

Figure 3 depicts the high-level multi-domain actor archi-
tecture. The basic concept is that actors are represented by
containers. Container technologies provide several advantages
namely software and network isolation. Thus each actor can be
implemented and deployed independently of the other actors.
Furthermore containers are conducive to software attestation
since the versioning control assures that verified version of the
software stacks are deployed on infrastructure. In our system
actors have types and types have different functionalities.
Figure 3 depicts a basic set of actor types but the architecture
is in no way limited to these types. Each domain can define
and deploy custom types which come into play when dealing,
for example, with different data transfer protocols. The actors
fall into four broad categories i.e. actors for authorisation and
authentication, actors for control layer, actors for data layer,
and actors for compute layer. The current types we envision
are:

Auditor actor forms part of the authorisation layer which is
one of the main components of the network. Authorisations are
done on the bases of policy. Each auditor, internally, executes
a belief and desire system as described in Sec. III. The Jason
model listens for application requests on the message bus and
authorises them by signing the request depending on its belief
and desire model. Each domain can have as many auditors as
needed and it is up to the agreed application on how many and
which auditor signatures are needed for each application to go
ahead. The distribution of the auditors allows decentralisation
of authority which in turn distributes trust onto the multiple
domains.

Application planners are actors that coordinate the exe-
cution of the distributed application. We model applications
as workflows that are translated to a list of instructions and
transactions that coordinate the application. Fig. 5 illustrates a
high-level view of an workflow application and its equivalent
list of transactions. The figure also illustrates the notion of
execution archetype. Application archetypes define the pattern
an application should follow. For example, moving compute to
data or moving data to compute are two different archetypes of
the same application logic. The choice between archetypes is
a matter of pre-agreed policy. Planner actors are responsible to
get authorisations from the necessary auditors for each instruc-
tion/transactions. These are done through requests as described
in Sec. IV-B. A planner sends a request for signatures on the
message bus to the requested auditors. Upon receiving the
signatures the planner can go ahead and contacting the control
actors such as data buckets to make the data transfers.

Data registries are responsible for publishing and maintain-
ing the data catalogues. They act mainly as a query endpoint
for discovering new datasets and contain infrastructural infor-
mation e.g. which bucket controller is responsible for which
data manifest.

Data bucket controllers are controllers that run on the
host machine. This is because they are responsible of booting
containers an managing network interfaces for the data buck-
ets. When data needs to be transferred a bucket controller is
responsible for creating an data endpoint container known as a
data bucket and create the service within the bucket such as an
HTTP server to serve the data. The bucket controller is invoked
by the planner to start data transfers. The bucket controller
is responsible for checking that the planner has acquired the
requested auditor signatures before going ahead and booting
up the data buckets. Bucket controllers from different domains
need to coordinate to open VPN tunnels for data transfers. The
tunnel interfaces are attached to the data bucket container at
runtime.

Data buckets are the actor containers that are responsible
for the transferring of data. The buckets are transient and only
created by the bucket controller when a transaction is invoked.
This minimises the exposure of the data which minimises the
attack vector. The data buckets network interface is controlled
by the bucket controller. In essence the network interface only
connects to the client data bucket over a dedicated VPN for
the transaction. This means communication is only limited to
the two data buckets, server and client. Figure 4 illustrates this
concept of controller and buckets in a multi-domain scenario.

Custom data buckets are data buckets are are application
specific. The creation sequence is similar to the data buckets
but differ in the services being hosted in the bucket. For
example, a data streaming data bucket hosts different services
than an file server.

Compute controllers are responsible for managing the pro-
cessing part of the workflow. Similar to the bucket controller,
the compute controller is responsible of verifying the agreed
code is being executed and to configure the resources for
compute e.g. using GPU clusters to perform the computation.

It is also responsible to create compute interfaces for the
duration of the execution e.g. portals and web services.

Compute interfaces are transient containers created by
the compute controller to facilitate the application. These
are application dependant are custom for each application.
For example, an application could expose and API which is
accessed by the planner to coordinate the execution of the
workflow.

State manager actors are responsible to introduce external
events into the network to drive the applications. For example,
from the ArenaA use-case described in Sec. IV-A an applica-
tion is invoked in a state of emergency. The state manager
is responsible to broadcast these events on the message bus
which will in turn trigger the appropriate planners to start
executing.

Actor registries act as address books for the running actors.
They serve the discovery of the actors and the functions they
are exposing along with other infrastructure details such as
public key to IP mappings which is used by controllers to
setup connections.

Domain CA is the top level certification authority of the
domain. It is responsible to sign keys of its domain actors
which in turn is used by other domains to verify that an
actor belongs to a particular domain. The different domain
CAs form the web of trust and each domain is responsible
to include foreign domains as trusted. This is typically done
in the negotiation phase of creating the policies. By trusting
a domain means that actors from the different domains can
communicate.

Domain border message router is the contact point to
other domains. The addressing scheme we described earlier
includes the hash of the domain public key. This is used by the
border router to forward any messages to the correct domain. It
also is responsible to verify if the foreign domain is not trusted
in which case it ignores the messages. The border router is also
responsible to receive messages from foreign domains and put
them on the local message bus. Here also, the router verifies
if the foreign domain is trusted.

Message loggers maintain a tamper proof database of mes-
sages. Since the system has no central authority that controls
the logs each domain is responsible to capture enough logging
information from other domains. This can be a policy decision
such as each domain cross logs with another domain which
minimises the possibility of a domain tampering with its own
logs. The main reason for maintaining a record of messages
is for diagnosing postmortem policy violations. These could
occur for several reasons either from wrong implementation
of the policy or malicious attempts to thwart the policy.

A. Prototype

To prove our approach we implemented an overlay pro-
totype that we showcased for the first time during the 2019
SuperComputing conference in Denver [6]. Our current proto-
type shows a secure execution environment that can be used
in a multi-domain infrastructure. In particular, we focus on
orchestrating virtual infrastructure such that it only allows the

LOG

DB

Ctrl

Ctrl

Ctrl

Auditor/notary

B

C

A

Transaction list:

1. A-C
2. B-C
3. Compute
4. C-A

Bucket
Bucket1. A-C

Fig. 4. Three domains A,B,C running controllers. The domains are tasked to
execute the transition list (top left). The first transaction (bold arrow) shows
a bucket in domain A connected via VPN to a bucket in domain B. At the
top right you see the Auditor component, which receives updates from the
domains about the transactions occurring

Fig. 5. Realisation of a workflow application to a set of network transactions.

agreed application transactions to occur and to provide detailed
logging that is used during the runtime stage of the auditing
process.

All nodes are implemented as web services but instead
of reacting to HTTP requests they react to messages on the
message bus. Using the concept of topics on the message bus,
actors can listen to any message that is directed to them with
their public key as part of the topic. The node will then switch
internal to call the relevant function. Signing the response with
its own private key will ensure that the response came from
the actual intended actor and not some other actor nefariously
responding to messages.

Buckets are managed using the bucket controller that han-
dles the creation and destruction of buckets. By default,
buckets do not have any network connectivity and no interfaces
associated to it. When a transaction occurs, bucket controllers
use Wireguard [8, 18] to configure an encrypted VPN con-
nection between two buckets and moves the VPN interface
into the network namespace [5] that is associated with the
bucket. The encryption keys for the VPN are transaction
specific thus each transaction is secured separately. When the
transfer is completed or when computation is executed the
network interfaces are removed from the containers to prevent
unauthorised communication.

To maintain a tamper resistant audit log, the prototype

borrows some ideas from blockchain. Each logger maintains
a linked list of logs using hashes. A set of logs is called a
block. Periodically, a new block entry is created by hashing
the previous set of logs and including the hash in the next list
entry. The list of hashes means that a modification to a log
entry will break the hashing. Still nothing stops a malicious
attempt to tamper with the log to modify the whole database.
For this reason new block hashes are announced to loggers of
different domains which they will include them into their own
logs (Fig. 6). With this approach logs from different auditors
can be cross-referenced for tampering.

Fig. 6. Auditors maintaining separate audit log in a linked list of hashes to
minimise tampering. Block hashes are cross referenced between auditors to
prevent audits modifying their own log locally.

Figure 7 depict a running prototype with a hello world
workflow. The workflow consists of two data image inputs a
compute and an image output. The archetype of this workflow
dictates that a third party domain will do the computation thus
compute, and two data inputs are transferred to a third domain
for computation and the output is copied out as can be depicted
from Figure 5.

Fig. 7. Left circle: shows the overlay network with data buckets in different
colour coded domains. The lines between buckets depict dynamic VPN con-
nections being created per transaction. Top right: the workflow transaction list
and the planner address that is coordinating the execution of the transactions.
Centre right: the application progress. Bottom right: the 3 auditor logs (1 from
each domain) logging and auditing the activity on the network.

B. ArenA applicability

Applying our infrastructure approach to the ArenA use-
case (Sec. IV-A) means that both domains, OMC and VMCA
maintain their own administrative domain and host several
actors that would allow the execution of the applications. The
coordination of the data transfer application is encoded and
handled by a planner container as list of instructions that

Fig. 8. Sequence of multi-domain actor interactions for realising a data transfer between two domains in the case of an emergency event has been triggered.

are triggered on an emergency event. Each domain hosts an
auditor actor which is populated with the belief and desire
routines described in Sec. IV-B. Having an auditor actor on
both domain allows each request to be signed by both domains
before going ahead. The coordination of the data transfers need
to a coordinator entity which is encapsulated in a planner actor.
The planner actor can technically be hosted in either domain
and is matter of agreement between the involved parties who is
responsible for which planner. A border message router allows
for information flow between the two domains. While bucket
controllers allow for configuring the data transfer endpoints.

Figure 8 depicts a high-level view of the minimum interac-
tions between the different domain actors for the dataflows
described in Section IV-A1. In the event of an emergency
being triggered by the police and event is fired from the
OMC’s state manager. The event is broadcast to the network
and is picked up by the auditors which update their internal
system. The state managers of each domain listening on
the network also register the event and shift the state of
all the internal components to the new state. Planners are
triggered on events i.e. the planner to effect the data transfers
between OMC and VMCA initiates its execution upon the
emergency event. In this case, the planner will first need to
get authorisations from the application pre-agreed auditors. A
signing request is sent to auditors of the OMC and VMCA
domains. At this stage a manifest is built as input for the
Jason input (as shown in table I). The auditors can only sign
the requests if the output of the Jason model program is
positive in which case they will return a signed version of

the transfer requests back to the planner. The planner can
now instruct the controllers on both domains to start the
transfers. Each controller first validates the signatures and
then go ahead to coordinated between themselves to setup a
transaction dedicated VPN and containerised services to host
server/client programs. The transfer can then take place after
which the controllers tear down the connection and services.
For clarity many other component interactions are not depicted
here e.g. logging, address key validation, key generation, and
populating registries/catalogues.

VI. DISCUSSION AND CONCLUSIONS

In this paper we described and architecture for collabora-
tive multi-domain applications with an emphasis on policy
modelling and enforcing as a core part of the architecture.
We showed how we can architect an infrastructure for a real
world use-case starting from policy down to the actual network
connectivity. Although the application we have used is very
simple (simply copying data from source to destination) the
fact that has to be done in a multi-domain under different
policy quickly explodes the infrastructure needed to support
such applications.

The proposed architecture and conceptual model guarantee
the enforcement of data policies, and thus realise the secure
and trustworthy data sharing process. In the conceptual model,
we first introduced the “manifest” to describe the metadata of
the dataset, the “auditor” to judge if the request of operation on
the infrastructure is compliant with the policies or not, and the
components required to construct policies. In addition, we also

applied these components to map the policies into conditional
statements and executable actions, so that the auditing and
authorisation process can be auto executed. In this work,
we apply the AgentSpeak language Jason to implement this
auditing process which becomes a cornerstone of safeguarding
data transfers in our decentralised architecture.

The decentralisation of the architecture allows for no single
controlling domain in favour of a more complex web of trusted
domains. This means every component such as auditing and
logging has to be thought of as a distributed, decentralised
component since single control of such components requires
trust in a one domain that will no tamper with logs for its own
benefit. We architected domains as their own administrative
domain and inter-domain communication is done through mes-
saging akin to email services. The actor model approach allows
for a scalable decoupled architecture while the cryptographic
addressing ensures a secure and identifiable communication.

Although our system aims at enforcing policies in dis-
tributed infrastructure, it assumes non-malicious parties. Since
domains control their own administrative boundary, they can
potentially leak data or tamper with compute. Preventing
such malicious attempts is whole other research effort which
could include data watermarking and deterministic compute
code which can be verified by multiple parties or monitoring
container system calls to detect malicious anomalies in the
containers code base.

REFERENCES

[1] Riham AlTawy and Amr M Youssef. Security tradeoffs
in cyber physical systems: A case study survey on
implantable medical devices. IEEE Access, 4:959–979,
2016.

[2] Rafael H Bordini, Jomi Fred Hübner, and Michael
Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason, volume 8. John Wiley & Sons,
2007.

[3] Quyet H. Cao, Madhusudan Giyyarpuram, Reza Farah-
bakhsh, and Noel Crespi. Policy-based usage control for
a trustworthy data sharing platform in smart cities. Future
Generation Computer Systems, 107:998 – 1010, 2020.

[4] Ge Chu and Alexei Lisitsa. Poster: Agent-based (bdi)
modeling for automation of penetration testing. In 2018
16th Annual Conference on Privacy, Security and Trust
(PST), pages 1–2. IEEE, 2018.

[5] J. Claassen, R. Koning, and P. Grosso. Linux contain-
ers networking: Performance and scalability of kernel
modules. In NOMS 2016 - 2016 IEEE/IFIP Network
Operations and Management Symposium, pages 713–
717, April 2016.

[6] Reginald Cushing, Ralph Koning, Lu Zhang, Paola
Grosso, and Cees de Laat. Auditable secure network
overlays for multi-domain distributed applications. In
IFIP Networking 2020.

[7] Simon Dalmolen, HJM Bastiaansen, EJJ Somers, So-
mayeh Djafari, Maarten Kollenstart, and Matthijs Punter.
Maintaining control over sensitive data in the physical in-

ternet: Towards an open, service oriented, network-model
for infrastructural data sovereignty. In 6th International
Physical Internet Conference (IPIC), London 2019, 2019.

[8] Jason A Donenfeld. Wireguard: Next generation kernel
network tunnel. In NDSS, 2017.

[9] Johnson Iyilade and Julita Vassileva. P2u: a privacy pol-
icy specification language for secondary data sharing and
usage. In 2014 IEEE Security and Privacy Workshops,
pages 18–22. IEEE, 2014.

[10] Basel Katt, Xinwen Zhang, Ruth Breu, Michael Hafner,
and Jean-Pierre Seifert. A general obligation model and
continuity: enhanced policy enforcement engine for us-
age control. In Proceedings of the 13th ACM symposium
on Access control models and technologies, pages 123–
132, 2008.

[11] Florian Kelbert and Alexander Pretschner. Data usage
control enforcement in distributed systems. In Pro-
ceedings of the third ACM conference on Data and
application security and privacy, pages 71–82, 2013.

[12] Zeshan Aslam Khan, Edison Pignaton de Freitas, Tony
Larsson, and Haider Abbas. A multi-agent model for fire
detection in coal mines using wireless sensor networks.
In 2013 12th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications,
pages 1754–1761. IEEE, 2013.

[13] Andres Munoz-Arcentales, Sonsoles López-Pernas, Ale-
jandro Pozo, Álvaro Alonso, Joaquı́n Salvachúa, and
Gabriel Huecas. An architecture for providing data usage
and access control in data sharing ecosystems. Procedia
Computer Science, 160:590–597, 2019.

[14] Inah Omoronyia. Reasoning with imprecise privacy
preferences. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 952–955, 2016.

[15] Jaehong Park and Ravi Sandhu. The uconabc usage
control model. ACM Transactions on Information and
System Security (TISSEC), 7(1):128–174, 2004.

[16] Alexander Pretschner, Manuel Hilty, Florian Schütz,
Christian Schaefer, and Thomas Walter. Usage control
enforcement: Present and future. IEEE Security &
Privacy, 6(4):44–53, 2008.

[17] Giovanni Sileno, Alexander Boer, Tom M van Engers,
et al. The institutional stance in agent-based simulations.
In ICAART (1), pages 255–261, 2013.

[18] Peter Wu. Analysis of the wireguard protocol. 2019.
[19] Gulnara Zhabelova, Valeriy Vyatkin, and Victor N Du-

binin. Toward industrially usable agent technology for
smart grid automation. IEEE Transactions on Industrial
Electronics, 62(4):2629–2641, 2014.

[20] Lu Zhang, Reginald Cushing, Leon Gommans, Cees
De Laat, and Paola Grosso. Modeling of collabora-
tion archetypes in digital market places. IEEE Access,
7:102689–102700, 2019.

