
Run, Agent, Run
Architecture and Benchmarking of Actor-based Agents

Mostafa Mohajeri Parizi
m.mohajeriparizi@uva.nl

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

Giovanni Sileno
g.sileno@uva.nl

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

Tom van Engers
vanengers@uva.nl

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

Sander Klous
s.klous@uva.nl

Informatics Institute, University of Amsterdam
Amsterdam, the Netherlands

Abstract
In this paper we introduce an Agent-Oriented Programming
(AOP) framework based on the Belief-Desire-Intention (BDI)
model of agency. The novelty of this framework is that it
utilizes the Actor Model, instantiating each intentional agent
as an autonomous micro-system run by actors. The working
hypothesis behind this choice is that defining the agents via
actors results in a finer grained modular architecture and
that the execution of agent-oriented programs is enhanced
(in scalability as well as in performance) by relying on ro-
bust implementations of actor models such as Akka. The
framework is benchmarked and analyzed quantitatively and
qualitatively against three other AOP frameworks: Jason,
ASTRA and Sarl.

Keywords: Agent-Oriented Programming,AOP, Reactive Pro-
gramming, Intentional Agents, BDI, Actor Model, Bench-
mark

ACM Reference Format:
MostafaMohajeri Parizi, Giovanni Sileno, Tomvan Engers, and Sander
Klous. 2020. Run, Agent, Run: Architecture and Benchmarking of
Actor-based Agents. In AGERE ’20: Workshop on programming sys-
tems, languages and applications based on actors, active/concurrent
objects, November 15–20, 2020, Chicago. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/1122445.1122456

1 Introduction
Agent-basedmodels have an intuitivemapping to behavioural
descriptions, and for this reason are extensively used for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
AGERE ’20, November 15–20, 2020, Chicago
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

modeling and simulations of social systems. However, agent-
based programming is not only relevant for simulation. Data-
sharing infrastructures as digital marketplaces exhibit the
double status of computational and social systems. Regulat-
ing these infrastructures requires to reproduce to a certain
extent constructs similar to those observed in human institu-
tions (e.g. For which purpose the agent is asking access to the
resource? On which basis the infrastructure is granting ac-
cess?). For traceability and explainability reasons, decisions
concerning actions need to be processed by the infrastructure
as much as other relevant operational aspects. Agent-based
programming, by looking at computational agents as inten-
tional agents, provides this level of abstraction available by
design. However, such an application context raises concerns
on how we can efficiently map logic-oriented agent-based
programs into an operational setting, a problem motivating
the present research.
The paper proceeds as follows. Section 2 provides some

background on relevant concepts and related works. Sec-
tion 3 presents the AgentScriptCC framework, a logic-based
agent-oriented programming where agents are run by actors.
Section 4 reports on an empirical experiment comparing
AgentScriptCC with three other relevant frameworks (Jason,
ASTRA and Sarl) with respect to 3 benchmarks (token ring,
chameneos redux and service point), known to capture rele-
vant patterns in concurrent applications. Section 5 compares
the frameworks qualitatively. A note of future developments
conclude the paper.

2 Background
2.1 Agent Oriented Programming
Agent-Oriented Programming (AOP) is a programming par-
adigm that uses mental attitudes to program autonomous
computational agents. It was initiated by Shoham [28] in
1993 and has attracted increasing attention, in particular
as it is believed to provide an effective abstraction to ap-
proach complex software systems (e.g. [27]). In the begin-
ning it was presented as being a more specific version of

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

AGERE ’20, November 15–20, 2020, Chicago Mohajeri Parizi, et al.

Object Oriented Programming (OOP) because, whereas ob-
ject classes contain arbitrary components, all types of agents
share the same types of mental states and structural relation-
ships/mechanisms involving those.

2.2 Belief-Desire-Intention (BDI) model
Having its roots in a theory of mind [5], using categories that
are used typically to address human behaviour to describe
agents, the belief-desire-intention (BDI) model [26] has been
and is still extensively investigated as basis to represent
computational agents that exhibit rational behaviour [17].

Beliefs are the factual or inferential information the agent
has about itself or its environment. Desires, in their simplest
form, are objectives the agent wants to accomplish in the
environment. Intentions are the courses of action the agent
has committed to. In practice, BDI agents include concepts of
Goals and Plan. Goals are instantiated desires and plans are
abstract specifications relating a goal to the means of achiev-
ing that goal. Multiple programming languages and frame-
works have been introduced based on the the BDI model, as
AgentSpeak(L)/Jason [4, 25], 3APL/2APL [10], GOAL [20]
and IMPACT [15].

2.3 Actor model
The actor model, introduced in [19], is a mathematical the-
ory that treats actors as the primitives of computation [18].
Actors are essentially reactive concurrent entities that use
message passing as the the basis of their communication.
When an actor receives a message it can concurrently send
messages to other actors; spawn new actors; modify its re-
active behavior for the next message it receives. Originally
proposed as a tool for theoretical understating of concur-
rency, the actor model serves now as the basis of several
production-level solutions for distributed and asynchronous
systems, and for reactive programming. These solutions in-
clude Akka [16], a library developed for the JVM environ-
ment that has attracted a strong community that enriched it
with multiple complementary tools for distributed environ-
ments and stream processing, C++ Actor Framework (CAF)
[7] a library written in C++ for creating concurrent programs
and Pony [8, 9] is an actor language for building robust paral-
lel systems by providing data-race free isolation for actors. A
comprehensive overview and benchmark over these works
can be found in [3].

2.4 Related work
Multiple AOP and BDI frameworks have been introduced
proposing diverse approaches towards language, execution
model, etc. Jason [4] is plausibly the most known amongst
those (it is the most used choice in the Multi-Agent Program-
ming Contest [11]), and has been constantly developed in the
last 15 years. It uses an extended version of AgentSpeak(L)

[25] as its language. It is implemented in Java and is essen-
tially an interpreter for its logic-based DSL. Two other frame-
works that are inspired by Jason are Pyson [1] and LightJason
[2]. Pyson was introduced as a scalable counterpart to Jason.
It is an interpreter implemented in Python programming
language and it uses MapReduce technology as the execution
infrastructure to achieve better scalability specifically w.r.t.
the number of agents. LightJason is BDI framework that
uses a variation of AgentSpeak(L) and tries to improve the
scalability of Jason by implementing a concurrent platform
following best practices in software engineering.

ASTRA [13] is yet another framework inspired by AgentS-
peak(L)/Jason and is also implemented in Java, but unlike
Jason it is not an interpreter, ASTRA relies on a transpilation
approach whichmeans that, through a build pipeline the DSL
is first translated to pure Java code and then the Java code
is compiled to byte-code for execution. The Sarl [27] frame-
work is not introduced as a BDI platform and does not use
the same abstractions. Nonetheless it is an AOP framework
written in Java that also uses transpilation.

Although several AOP/BDI frameworks have been intro-
duced in the recent years (all hinting to problems of scala-
bility), there is a small amount of empirical data available
about how they perform in comparison to each other. In [6]
multiple actor and agent frameworks are benchmarked in-
cluding 2APL [10], GOAL [20], Jason and Akka. Their results
showed that Jason outperformed other BDI frameworks by
far and scaled almost on par with Akka. But at that time
(2013) none of these newer frameworks had been introduced
yet, and Akka had not the support it has today. Strangely
enough, none of these new AOP frameworks has the actor
model at their foundation. The present paper investigates
part of this gap.

3 AgentScriptCC
The AgentScriptCC framework consists of: (a) a logic-based
Agent-Oriented Programming DSL; (b) an abstract execution
architecture; (c) a translation method that generates exe-
cutable models from models specified by the DSL; (d) tools
to support the execution of models. We provide here a brief
overview on these components.

3.1 AgentScriptCC DSL
The AgentScriptCC DSL has a very close syntax to AgentS-
peak(L) language and includes some of the extensions pro-
vided by Jason. The main components of the DSL are (1)
initial beliefs, (2) inferential rules, (3) initial goals, and (4)
plan rules. The initial beliefs and goals express the mental
state of the agent at the start of execution. Initial beliefs are
a set of Prolog-like facts, and the initial goals trigger the
first intentions to which the agent commits. Inferential rules
are potentially non-grounded declarative rules (Prolog-like),
used to infer beliefs from beliefs.

2

Run, Agent, Run AGERE ’20, November 15–20, 2020, Chicago

Plan rules are potentially non-grounded reactive rules in
the form 𝑒 : 𝑐 ⇒ 𝑓 that map different internal (e.g, goal
adoption, belief-update) or external (e.g, message reception,
perception) events to a sequence of executable steps called
the plan body which the agent has to perform in response to
the event. When a plan body 𝑓 is matched with an event 𝑒 ,
it is said that 𝑓 is relevant for 𝑒 . Each plan also has a context
condition 𝑐 which is a Prolog-like expression. When a plan
𝑓 is relevant for 𝑒 and also 𝑐 holds, it is said that the 𝑓 is
applicable for 𝑐 . The steps of a plan body can include belief
query, belief update, sub-goal adoption, primitive actions,
variable assignment, and control flow structures (loops and
conditionals).

3.2 AgentScriptCC Execution Architecture
In contrast to AgentSpeak(L)/Jason, the execution architec-
ture of AgentScriptCC agents is based on the actor model.
Each agent consists of multiple actors with different roles: (i)
an Interface actor, (ii) a Belief Base actor, (iii), an Inten-
tion Pool actor and (iv)𝑁 ≥ 1 Intention actors. Apart from
the actors, each agent also has other non-actor components,
namely (1) a plan library, and (2) one or more belief bases.

The plan library of the agent consists of a set of plan rule
objects in the form {e,c,f}, where e is an object that can
be matched and unified with event messages to determine
if a plan rule is relevant for that event, c is an expression
object that can be sent to the Belief Base actor to determine
if the plan is applicable and f is a function representing the
body of the plan.

The belief base(s) of the agent can be in practice any type
of storage technology. To interface an arbitrary belief base
into the agent architecture a translation function needs to
be implemented for mapping the query messages into the
queries of that belief base and vice versa, translating the
responses into result messages.1

3.2.1 Interface actor. The Interface actor acts as the main
entity of the agent. It initializes the Belief Base and Intention
Pool actors and then sends the initial beliefs and inferential
rules to Belief Base actor as assert messages and initial goals
to Intention pool actor as achieve messages. This actor is
the only component of the agent that is accessible from the
environment and the other agents: all incoming messages
and events must go though this actor and any message sent
from this agent will indicate the Interface actor as the sender
of message.

When the Interface actor receives a new message𝑚, based
on the type of the message it will either process it itself if
𝑚 is a control messages, (e.g, halt), forward it to Belief Base
actor if𝑚 is an assert message (e.g, perception) or forward

1For the benchmarks presented in this work we used a lightweight open-
source Prolog reasoning engine implemented in Scala called Styla, available
at https://github.com/fedesilva/styla. The library was minimally modified
and is available at https://github.com/mostafamohajeri/styla.

it to Intention Pool actor if 𝑚 is an achieve message (e.g,
request).

3.2.2 Belief Base actor. The Belief Base actor plays the
role of the connection between other components of the
agent and any data storage/reasoning engine that is used as
the belief base of the actor. This actor accepts querymessages
(retract, assert and unify) and responds with result of the
query. The technology of the data storage(s) is abstracted
behind this actor and it can be changed by the programmer
without affecting the rest of the framework.

Apart from processing queries, the Belief Base actor also
feeds back belief-update events to the Interface actor. The
semantics of when these events should be created are exter-
nalized to the core of architecture and can be programmable
by the designer.

3.2.3 Intention Pool actor. The Intention Pool actor re-
ceives events from the Interface actor and processes them.
To process a received event v, the set of relevant plan rules
{e,c,f} are selected from the plan library by matching and
unifying v against e. Then these relevant plans are fetched
from the plan library and sent to an idle Intention actor. The
Intention pool actor can spawn 𝑁 number of Intention ac-
tors, where the configurable number 𝑁 dictates the number
of parallel intentions each actor can have at each instant.
This actor uses a prioritized mailbox that sorts the messages
based on the externalized programmable priority function 𝑆𝐸
and a new event is processed only if there are idle Intention
actors to forward it to. This mechanism makes sure that as
long as there are no resources available, new events stay
in the mailbox to be re-prioritized by 𝑆𝐸 and when an idle
Intention actor becomes available the event with the highest
priority is processed.

3.2.4 Intention actor. An Intention actor is a reusable
unit of execution for the agent. It receives an event v along-
side a set of plan rule objects {e,c,f} from the Intention
Pool actor for execution. The execution consists of three
phases: (i) the applicability of each plan rule is checked by
sending a query message containing c to the Belief Base
actor; (ii) from the set of applicable plans, one is selected by
the externalized programmable function 𝑆𝑃 for execution;
(iii) the function f of the selected plan is executed by the In-
tention actor. After the execution of v is completed either by
success or failure status, a message is sent to the actor which
originally requested v containing the completion status and
also a message is sent to Intention Pool actor signaling that
this actor is now idle.

3.3 Translation Method
The translation method is designed to transpile the models
defined in the AgentScriptCC DSL defined in 3.1 into agents
with the architecture defined in 3.2.

3

https://github.com/fedesilva/styla
https://github.com/mostafamohajeri/styla

AGERE ’20, November 15–20, 2020, Chicago Mohajeri Parizi, et al.

Figure 1. AgentScriptCC execution architecture

For each entity of the DSL, a mapping is defined to gen-
erate the code in the executable underlying language that
can instantiate the objects with the desired semantics at run-
time. The translated entities are then fitted in the abstract
architecture to form an executable agent program.

3.3.1 Terms and Expressions. The AgentScriptCC DSL
uses prolog-style terms and expressions. In the translation
of an script written in the DSL, each term and expression
(including inferential rules) maps to a Term or Expression
object which encapsulates the parsed data which potentially
can also contain nested Terms and Expressions.

Low-level access. Resulting from to the approach based
on transpilation, the DSL provides direct access to any ob-
ject or function available in the agent’s name space2. These
low-level access statements, indicated by the token #, are
translated literally to the same statement in the underlying
language. This capability, provides fast and seamless reuse
of libraries already established for the underlying language.

3.3.2 Initial beliefs/goals and inferential rules. At syn-
tactic level, initial beliefs and inferential rules are logic-style
expressions, and as such they translate to an Expression ob-
ject counterpart. Initial goals are a combination of a trigger
(!) and a term and they translate to a Goal object encapsu-
lating the trigger and a Term object.

3.3.3 Plan rules. A plan rule < 𝑒, 𝑐, 𝑓 >, should be trans-
lated into the object {e,c,f} which will be part of the plan
library. The event of the plan rule 𝑒 consists of a trigger
(+!,-!,+?,+,-) and a term 𝑡 . The event 𝑒 then translates
to an Event object which encapsulates the trigger and the
translated Term object of 𝑡 . The context condition 𝑐 is an
expression and translates to an Expression object.
The body 𝑓 of a plan rule consist of zero or more steps

and each step can be one of the plan step types. The plan

2In the Scala implementation, any object or function which is accessible via
the Java class path.

body is translated into a function f, which contains the steps
of 𝑓 as imperative lines of code implemented in it. Each type
of step is translated differently as is described below.

Primitive actions. A primitive action in form of #f(...)
for an agent is translated into a low-level call to a function
f defined in the underlying language with its respective
parameters.

Variable assignments. Variable assignments in form of
V = exp are used to (re-)assign the result value of an expres-
sion exp to a variable V. AgentScriptCC uses an internal map-
like approach to store variables that also manages variable
scopes, meaning each code block (e.g, plan body, condition
block) holds a map of all variables declared in that scope
which also inherits the variables in its parent scope. Then a
variable assignment is translated to an append operation for
the variable map by using the 𝑉 as the key and exp as the
value.

Belief queries. Belief query steps are composed of a trig-
ger (-,+,?) and a term 𝑡 . As the belief base of the agent is
abstracted by the Belief Base actor, a belief query step is a
blocking message to the Belief Base actor containing the
trigger and the Term object of 𝑡 .

Sub-goals adoption. Task decomposition is crucial com-
ponent of BDI-like agents and in essence is the ability to
adopt sub-goals depending on the context of a plan. At the
syntactic level, a (sub-)goal adoption is a trigger (e.g, !,?)
plus a term 𝑡 . In the translation method a sub-goal adoption
step is translated as two phases, (i) a plan selection by using
𝑆𝑃 is done to select and fetch a plan rule object {e,c,f} from
the plan library, (ii) the function f(...) is called with any
parameters that 𝑡 may have as the arguments of f.

Control Flow Structures. The transpilation nature of
AgentScriptCC supports a straightforward mapping of sim-
ple control flow structures such as loops and conditionals
to their executable counterparts. The translation of these
control structures to the underlying language is performed
one-to-one; for example an if/else in the DSL is simply
translated to an if/else in the underlying language.

3.4 Tools for execution
The architecture of AgentScriptCC agents is based on the
actor model and for their execution these actors need an
actor system to spawn and start them. Additionally, a mes-
sage transportation layer needs to be specified to enable
communication between agents.

Our current implementation of AgentScriptCC is written
in Scala and is based on the Akka framework. It includes a
minimal infrastructure that is able to spawn and start the

4

Run, Agent, Run AGERE ’20, November 15–20, 2020, Chicago

transpiled agents3 4. The framework stays agnostic towards
the transportation layer as long as there is an interface to
convert messages from and to AgentScriptCC’s message
protocol. In the current implementation this transportation
layer simply makes use of Akka’s typed messages, but other
solutions can be easily integrated.

4 Benchmarks
The following section proposes quantitative comparisons be-
tween the AgentScriptCC framework and three other frame-
works: Jason (v2.5), ASTRA(v1.0.0) and Sarl(v0.11.0). Ja-
son [4] was chosen because like AgentScriptCC it uses a
language based on AgentSpeak(L), is implemented in Java
and as reported by [6] potentially outperforms other BDI
frameworks. ASTRA and Sarl are both also implemented in
Java, but more importantly like AgentScriptCC, rely on a
transpilation approach which makes them a good candidate
for our comparison.
To compare the performance of these frameworks, two

fairly standard benchmarks close to what has been presented
in [6]. The main difference to [6] is the metrics as we sepa-
rated the interpretation/setup time from the execution time
to present better insight about how these frameworks oper-
ate while in [6] they are considered together. An additional
benchmark was also performed to assess the ability of the
frameworks to allow concurrent decomposition of tasks in-
side their agents. The benchmarks were performed on a De-
bian GNU/Linux 10 machine with an 8 core Intel(R) Xeon(R)
CPU E5-1620 v4 @ 3.50GHz CPU and 64GB of RAM using
Java version 11 with GraalVM 20 JRE. Each benchmark was
performed 10 times and the JVM was stopped between each
run to avoid the impact of one experiment on the next.
In the two first benchmark scenarios, three metrics are

recorded (1) total interpretation/setup time, including agent
creation time (2) internal execution time measured from
the instant that the first agent starts until the completion
of the test (3) CPU core load. The benchmark execution
and data gathering is done with a python script that runs
the benchmarks in the desired dimensions and records the
metrics5.

4.1 Token Ring
The token ring benchmark is a simple program targeting
multiple aspects of parallel frameworks: handling different
number of agents, message passing and level of concurrency
each agent can achieve. The testing scenario consists of𝑊
worker agents, 𝑇 tokens are distributed among the workers,
and each token has to be passed 𝑁 times in a ring. When all

3Source code (translator module) at https://github.com/mostafamohajeri/
scriptcc-translator
4Source code at https://github.com/mostafamohajeri/agentscript
5Source code at https://github.com/uva-cci/aop-benchmarks-agere2020

𝑇 tokens have been passed 𝑁 times, the program ends. To
run this benchmark a program should:

• create𝑊 number of workers;
• each worker should be connected to its neighbor form-
ing a complete ring;

• initially each token 1 ≤ 𝑖 ≤ 𝑇 is assigned to a worker
1 ≤ 𝑗 ≤𝑊 with the equation 𝑗 = 𝑖 ∗ (𝑊 /𝑇)

• each worker sends the token to its neighbor
The program finishes when all 𝑇 tokens have been passed
𝑁 times.
The experiment was performed by varying𝑊 , 𝑇 and 𝑁

independently within the values {4, 16, 256, 1𝑘, 4𝑘}, resulting
in 125 different configurations for each framework. We also
put a 1 minute limit for each execution and anything beyond
that is considered a timeout.

4.1.1 Implementation notes. In all implementations a
broker agent is present that starts the benchmark by dis-
tributing the tokens and gathering completed tokens to stop
the execution. There is a difference in the Sarl implemen-
tation as Sarl does not provide a central agent resolver to
address agents by name and because of this an extra step is
implemented in the broker to iterate over all worker agents
and link them together in a ring.

4.1.2 Results. A summary of the results for this bench-
mark is presented in figures 2 and 3. In figure 2, the number
of agents𝑊 is the variable while 𝑁 and 𝑇 are kept constant
with two settings (𝑁 = 256,𝑇 = 256) and (𝑁 = 4𝑘,𝑇 = 4𝑘).
Only Jason and AgentScriptCC were able to execute (𝑁 =

4𝑘,𝑇 = 4𝑘). Sarl was able to only execute the benchmark up
to𝑊 = 256 agents and timed out with a warning6. ASTRA
seemed stable enough to finish the (𝑁 = 4𝑘,𝑇 = 4𝑘) test
but not within 1 minute. ASTRA executes very poorly for
(𝑁 = 256,𝑇 = 256) test specially with lower number of
worker agents plausibly because with less worker agents
each agent will have more concurrent threads of work to
execute. AgentScriptCC and Jason both perform almost with-
out much effect w.r.t number of agents suggesting that both
frameworks can handle concurrency inside agents to a good
extent, although in all cases Jason performs marginally bet-
ter.
In figure 3 another view on the results is presented. This

time the variable is the number of tokens 𝑇 and𝑊, 𝑁 are
kept constant in two settings (𝑊 = 256, 𝑁 = 256) and
(𝑊 = 4𝑘, 𝑁 = 4𝑘). Like the prevoius results Sarl could
only finish the (𝑊 = 256, 𝑁 = 256) test. ASTRA was able to
execute the (𝑊 = 4𝑘, 𝑁 = 4𝑘) test but only up to𝑇 = 1𝑘 and
timed out after that. In the (𝑊 = 256, 𝑁 = 256) Jason and
AgentScriptCC performed much better and scaled almost

6Potentially dangerous stack overflow in java.util.concurrent.locks
.ReentrantReadWriteLock. We suspect this occurs because at the start all
workers need to send a message to the broker to get their neighbors and
the broker can not handle this amount (≥ 1024) of concurrent messages.

5

https://github.com/mostafamohajeri/scriptcc-translator
https://github.com/mostafamohajeri/scriptcc-translator
https://github.com/mostafamohajeri/agentscript
https://github.com/uva-cci/aop-benchmarks-agere2020

AGERE ’20, November 15–20, 2020, Chicago Mohajeri Parizi, et al.

linearly with the number of tokens which shows that both
frameworks can handle the added concurrency and higher
number of message passing in an efficient manner. On the
other hand Sarl and ASTRA perfomed poorly under the in-
creasing amount of tokens. In the (𝑊 = 4𝑘, 𝑁 = 4𝑘) test
Jason performs marginally better than AgentScriptCC.

CPU load. In figure 4 the average core load during the
token ring test in the𝑊,𝑇 = 256 and 𝑁 = 4096 setting for
each framework is presented and in figure 5 the average core
load for the𝑊,𝑇, 𝑁 = 4𝑘 setting is shown. As it can be seen
in the lower settings Jason and ASTRA have much less CPU
demand than AgentScriptCC and Sarl. On the other hand in
the higher setting in figure 5 the CPU load between Jason
and AgentScriptCC is closer with AgentScriptCC averaging
at 88.6% and Jason at 85.7% while they respectively averaged
at 77.7% and 57.7% in the lower setting. This can be an in-
dication that AgentScriptCC has a higher footprint on the
CPU load specially for initialization time.

To understand how much each framework can distribute
the load between CPU cores we have to look at the standard
deviation of CPU load data. A higher deviation from aver-
age indicates that the framework is not balancing the load
between cores. ASTRA shows to have very poor load balanc-
ing with the deviation almost as high as the average which
can mean some of the cores are not even used in execution.
Sarl has a high balancing of cores even in lower setting. In
the higher settings both Jason and AgentScriptCC seem to
distribute the load between CPU cores sufficiently.

Initialization time. To assess the initialization time, to-
tal execution time is subtracted by the internal execution
time in the lowest setting with 𝑁 = 4𝑘 and𝑇 = 4𝑘 and the re-
sults are presented for increasing number of agents in figure
6. ASTRA proves to have the fastest initialization at least up
to 4𝑘 agents followed by Jason and closely AgentScriptCC.
Sarl seems to have the slowest time and scales very badly
with the number of agents.

4.2 Chameneos Redux
The second benchmark is adopted from [21] and is a test
intended to capture the effects of one limiting point to the
execution framework. The scenario consists of 𝐶 chameneo
creatures living in the jungle; they can go to a common place
to meet other creatures andmutate with them. Each creature
has a color assigned to it from a color pool and after mutation
its colour changes based on the color of the other creature it
met. These meetings should happen for a total number of 𝑁
times. To run this benchmark a program should:

• create 𝐶 differently colored (blue, red, yellow), differ-
ently named, concurrent chameneo creatures

• write all the possible complementary color combina-
tions;

• write the initial color of each creature;

41 42 43 44 45 46

103

104

Total number of agents𝑊

Av
er
ag
e
in
te
rn
al
ex
ec
ut
io
n
tim

e
(𝑚

𝑠)

(AgScCC,4k,4k) (Jason,256,256)
(AgScCC,256,256) (ASTRA,256,256)
(Jason,4k,4k) (Sarl,256,256)

Figure 2. Token ring results for each (framework, 𝑇, 𝑁)

41 42 43 44 45 46
102

103

104

105

Total number of tokens 𝑇

Av
er
ag
e
in
te
rn
al
ex
ec
ut
io
n
tim

e
(𝑚

𝑠)

(AgScCC,4k,4k) (ASTRA,4k,4k)
(AgScCC,256,256) (ASTRA,256,256)
(Jason,4k,4k) (Sarl,256,256)
(Jason,256,256)

Figure 3. Token ring results for each (framework,𝑊, 𝑁)

• each creature will repeatedly go to the meeting place
and meet, or wait to meet, another chameneo;

• both creatures will change color to complement the
color of the chameneo that they met;

• after 𝑁 meetings have taken place, for each creature
write the number of creatures met and the number of
times the creature met a creature with the same name
(should be zero).

• the program finishes when𝑁 meetings have happened.
The experiment was performed with the set of variables

𝐶 = {64, 256, 1𝑘, 4𝑘} and𝑁 = {1𝑘, 4𝑘, 16𝑘, 64𝑘}. This provide
6

Run, Agent, Run AGERE ’20, November 15–20, 2020, Chicago

0

20

40

60

80

100
77.79

55.78

29.19

89.13
av
er
ag
e
CP

U
co
re

lo
ad

(%
)

AgScrptCC Jason ASTRA SARL

Figure 4. CPU load (average and standard deviation on 8
cores) in token ring with 𝑁 = 4𝑘 , 𝑇 = 256 and𝑊 = 256

0

20

40

60

80

100 88.66 85.74

av
er
ag
e
CP

U
co
re

lo
ad

(%
)

AgScrptCC Jason

Figure 5. CPU load (average and standard deviation on 8
cores) in token ring with 𝑁 = 4𝑘 , 𝑇 = 4𝑘 and𝑊 = 4𝑘

41 42 43 44 45 46
102

103

104

Total number of agent𝑊

Av
er
ag
e
in
iti
al
iz
at
io
n
tim

e
(𝑚

𝑠)

AgentScriptCC ASTRA
Jason Sarl

Figure 6. Initialization time in token ring with𝑇 = 4, 𝑁 = 4

us with 20 different configurations for each framework. All
tests were given a 1 minute time limit and it is considered a
timeout after that.

4.2.1 Implementation notes. In all implementations a
broker agent is present that acts as the meeting point for

43 44 45 46

103

104

Total number of chameneos 𝐶

Av
er
ag
e
in
te
rn
al
ex
ec
ut
io
n
tim

e
(𝑚

𝑠)

(AgScCC,4k) (ASTRA,4k)
(AgScCC,64k) (ASTRA,64k)
(Jason,4k) (Sarl,4k)
(Jason,64k) (Sarl,64k)

Figure 7. Chameneos redux results for each (framework, 𝑁)

chameneos. This agent is the main point of this benchmark
as it will be constantly under high number of requests from
the chameneos agents.

4.2.2 Results. The first view on the results is presented in
figure 7, in this set the number of meetings𝑁 is kept constant
at two values 4𝑘 and 64𝑘 whilst the number of chameneos
is the variable. The results show that Jason and AgentSpeak
scale well with the number of agents while AgentSpeak
performs marginally better in the 𝑁 = 64𝑘 test. Sarl and
ASTRA suffer from the higher number of agents to the point
that Sarl could finish both tests only up to 𝐶 = 1𝑘 agents
while ASTRA finishing 𝑁 = 64𝑘 test only in the 𝐶 = 64
agents setting.
In figure 8 another view on the results is presented, this

time the number of chameneos 𝐶 is kept constant at 256
and 4𝑘 whilst the number of meetings 𝑁 is the variable.
Sarl could only finish the 𝐶 = 256 test while ASTRA could
only finish it up to 𝑁 = 16𝑘 and timing out after that. Also
ASTRA was only able to finish the 𝐶 = 4𝑘 test with 𝐶 =

64 number chameneos. On the other hand AgentScriptCC
and Jason both completed the tests with linear scaling and
AgentScriptCC outperforming Jason slightly in the 𝐶 = 4𝑘
test. This shows that both Jason and AgentScriptCC can
handle higher levels of concurrency in the broker agent w.r.t
increasing number of concurrent requests.

4.3 Service Point
This last benchmark is not about performance. Rather, it is
designed to illustrate the differences between the execution
in a step-based framework like Jason in contrast to a tran-
spiler framework like AgentScriptCC, focusing on how they

7

AGERE ’20, November 15–20, 2020, Chicago Mohajeri Parizi, et al.

44 45 46 47 48

103

104

Total number of meetings 𝑁

Av
er
ag
e
in
te
rn
al
ex
ec
ut
io
n
tim

e
(𝑚

𝑠)

(AgScCC,256) (ASTRA,256)
(AgScCC,4k) (ASTRA,4096)
(Jason,256) (Sarl,256)
(Jason,4k)

Figure 8. Chameneos redux results for each (framework,𝐶)

handle actions—namely time-consuming primitive actions—
specified outside their DSL. The scenario of this benchmark
consists of one service point and 𝑁 number of consumers.
Each consumer sends 𝑅 requests to the service point and
waits for the response. The service point needs a random
𝑡𝑚𝑠 amount of time (0 ≤ 𝑡 ≤ 5000) to process each request.
A simple Thread.sleep(t) is used to mimic thread time
consumption. To run this benchmark a program should

• create 1 service point and 𝑁 service consumers.
• each consumer will send 𝑅 number of requests to the
service point

• the program finishes when all of the 𝑅 ∗ 𝑁 requests
have been responded

The experiment was done only on Jason and AgentScriptCC
with variables 𝑁 = {1, 4, 16} and 𝑅 = {1, 4, 16}. With respect
to total number of request 𝑅 ∗ 𝑁 , this gives us with 5 unique
configurations. Also to account for the added indeterminism
by the randomization each configuration is executed for 100
times.

4.3.1 Results. The results of this experiment are presented
in figure 9. Jason performs much worse in this scenario, as
it is not being able to finish the 256 requests within a 200
seconds timeout. This is even more strange as in our setting
Jason is set to use 8 threads and AgentScriptCC to 6 and by
looking at the results we can see that AgentScriptCC is al-
ways using the thread times completely but Jason is not. The
reason for this is that Jason uses a sequential reasoning cycle
inside each agent and at every reasoning cycle, a Jason agent
takes the next step from each of its intentions and executes
them. The reasoning cycle ends when all intentions execute

40 41 42 43 44

104

105

Total number of requests (𝑅 ∗ 𝑁)

In
te
rn
al
ex
ec
ut
io
n
tim

e
(𝑚

𝑠)

AgentScriptCC
Jason

Figure 9. Service point scenario results

one step. This means if in the reasoning cycle of an agent
one of these steps is a time-consuming primitive action, the
whole cycle will be blocked7. On the contrary a transpiled
agent does not have any notion of steps at run-time and the
parallelism between intentions of the agent is also handled
by the underlying concurrency model, in this case the actor
model. This matter is further discussed in 5.2.

5 Discussion
This paper presents and evaluates a framework for an AOP
language based on AgentSpeack(L) relying on transpilation.
Transpilation is not novel in itself as it has been used previ-
ously by other AOP frameworks like SARL [27] and ASTRA
[13]. The novelty of this work lies in two aspects. First, un-
like SARL and ASTRA, that use a DSL very close to their
underlying language (Java), AgentScriptCC uses a logic-
based DSL close to AgentSpeak(L). In fact, as our pipeline
starts from an antlr grammar, in principle this DSL can be
replaced by any other AOP language that can be mapped to
the AgentScriptCC abstract execution architecture. Second,
our approach maps the DSL into an architecture exploiting
the actor model: not only the final executable model is more
robust because it takes advantage of the established concur-
rency model and the maturity of the libraries implementing
the actor model (e.g, Akka), but also the translation itself is
an open process, so its product becomes in principle more
understandable for the programmer.

5.1 Language
Although all of these frameworks propose DSLs to program
reactive agents, the idea behind them differ. AgentScriptCC’s
DSL is based on AgentSpeak(L), which gives to the language
a logic-oriented flavour; this is also the case for Jason and
both frameworks can take advantage of Prolog-style terms

7Jason provides extra built-in directives like wait to mimic unblocking
suspension of intentions but that is beyond the context of this benchmark

8

Run, Agent, Run AGERE ’20, November 15–20, 2020, Chicago

and expressions. ASTRA’s DSL is also based on concepts
defined in AgentSpeak(L) but with more syntactic resem-
blance to Java. Sarl does not try to be a logic-based language,
therefore it does not contain notions correspondent to terms
or expressions, rather it has a language very close to Java.

5.2 Execution and Parallelism
As a common ground, all these frameworks are used to
specify reactive agents, but they differ in how the agent’s
(re)actions are executed. The most particular solution comes
with Jason which uses the concept of steps. The Jason inter-
preter treats each symbolic step or instruction of a reactive
rule (plan) as a single unit of execution and emulates an
imperative program by executing them in a sequence in
consecutive reasoning cycles. In contrast, in the other three
framework, the steps of the reactive rules are already imper-
ative programs ready to be executed. The approach taken by
Jason has important effects especially on how agents execute
multiple parallel threads of work (intentions) at the same
time. This concept is examined more in detail in section 4
and in [13].

5.3 Low-level access
One of the motivations behind developing AgentScriptCC
has been to enable access to libraries defined in the under-
lying general-purpose programming language of choice in
a easy and seamless way. In our view this impacts the us-
ability of the framework in larger applications. Leading by
an example, consider a programmer that needs to call the
Java function Thread.sleep(1) in a reactive rule. In Jason
one needs to create an extra class extending one of Jason’s
internal types (Agent, Action or Environment) and define
a method that wraps this low level function and then call
the wrapping method from the agent program. In ASTRA it
is almost the same as Jason and one needs to create a class
extending the type Module and wrap this function inside a
method and annotate it appropriately to be able to call it
from the agent program. On the opposite side, this is entirely
different for Sarl and AgentScriptCC, as one can simply call
this function directly from the agent program. In case of
AgentScriptCC it will be #Thread.sleep(1).

5.4 Communication
The communication in AgentScriptCC is entirely external-
ized, both for agent-to-agent and agent-to-environment com-
munication. In the current implementation communication
between agents uses Akka’s internal message system but this
can easily be replaced with any other type of communication
mechanism, e.g, by using a message queue (MQ) to be able
to execute the agents in a distributed setting.

5.5 Performance Comparison
The execution model of AgentScriptCC is closer to Sarl and
ASTRA than to Jason for the reasons explained in 5.2 and, as

shown by the benchmarks, it is substantially outperforming
both Sarl and ASTRA. At the same time AgentScriptCC per-
formance is still below what we expected. By profiling the
execution of benchmarks we found out that a considerable
amount of execution time is spent on the blocking due to
synchronized query calls to belief base. These calls had to be
synchronized because Prolog engines like Styla and tuProlog
[12] (another candidate solution we tested for handling belief
base) are inherently made for single thread access. Even a
simple read query to a Prolog engine still counts as write
access because of the backtracking. We believe once this
issue is addressed the performances of AgentScriptCC will
greatly improve.

6 Conclusion and Future developments
The slowly but steadily increasing interest in programming
languages based on BDI or functionally similar architectures
for virtual assistants, robotics, (serious) gaming, as well as
for social simulations, hints that there is a general consensus
that these solutions might be suitable to reproduce human-
like reasoning, or rather human-intelligible computation.
Historically, the majority of contributions in this area

were concerned mostly by the logical aspects of the prob-
lem rather than its computational aspects [17]. Observing
more recent contributions revealed the presence of issues
w.r.t. computational performance and compatibility to mod-
ern environments and tools, motivating efforts to redevelop
existing BDI frameworks according to best practices [1, 2].
Looking at intentional programming in the longer term, we
need to acknowledge that operational settings differ from
the typical low-scale simulation setting in which it is used
today. Besides a difference in scale, components can be fully
distributed.

Because of this a next step for AgentScriptCC is the capa-
bility to deploy and execute agents in distributed settings.
This seems to be an achievable task as there are already
approaches to run actors in distributed environments. An-
other related concept to be investigated both at theoretical
and practical levels is to extend event-based reactivity of
the agents into a stream-based reactivity to enable agent
programs in modelling modern data-enteric applications.

An initial motivation of using an actor-oriented architec-
ture for the intentional agents is that by having this extra
level of abstraction the agent become more modular which
furthermore enables the augmentation of agents with com-
plementary machinery like using AI modules (e.g. machine
learning-based) [29], norm reasoning modules [23], deliber-
ative planning (e.g. HTN, STRIPS) modules [22] and prefer-
ence checking modules [30]. Defining a sufficient interface to
support different types of add-ons for AgentScriptCC agents
will be investigated in the future.

We believe there are still mechanisms to be explored at
intentional level of agents, e.g, addressing the gap between

9

AGERE ’20, November 15–20, 2020, Chicago Mohajeri Parizi, et al.

goals and desires [14] or having explicit preferences as part
of the script [24]. By approaching an intentional agent as a
system of actors, we believe we can test different theories in
a more structured way by mapping them to strategies for the
actor-based architecture either by recomposing the abstract
architecture or by reprogramming the interactions between
(agent-internal) actors which is externally programmable.

Acknowledgments
This paper results from work done within the NWO-funded
project Data Logistics for Logistics Data (DL4LD, www.dl4ld.
net). The DL4LD project is funded by the Dutch Science Foun-
dation in the Commit2Data program (grant no: 628.001.001).

References
[1] Tobias Ahlbrecht, Jürgen Dix, and Niklas Fiekas. 2017. Scalable Multi-

agent Simulation Based on MapReduce. 364–371.
[2] Malte Aschermann, Philipp Kraus, and Jörg P. Müller. 2016. LightJason

- A BDI Framework Inspired by Jason. In EUMAS/AT.
[3] Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang,

Sophia Drossopoulou, and Tobias Wrigstad. 2019. Run, Actor, Run:
Towards Cross-Actor Language Benchmarking. In Proceedings of the
9th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control (Athens, Greece) (AGERE
2019). Association for Computing Machinery, New York, NY, USA,
41–50.

[4] Rafael H. Bordini, Jomi F. Hübner, and Renata Vieira. 2005. Jason and
the Golden Fleece of Agent-Oriented Programming. In Multi-Agent
Programming: Languages, Platforms and Applications. 3–37.

[5] Michael E. Bratman. 1987. Intention, Plans, and Practical Reason. Vol. 10.
Harvard University Press.

[6] Rafael C. Cardoso, Maicon R. Zatelli, Jomi F. Hübner, and Rafael H.
Bordini. 2013. Towards Benchmarking Actor- and Agent-Based Pro-
gramming Languages. In Proceedings of the 2013 Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control (Indianapolis,
Indiana, USA) (AGERE! 2013). Association for Computing Machinery,
New York, NY, USA, 115–126.

[7] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2014.
CAF - the C++ Actor Framework for Scalable and Resource-Efficient
Applications. In Proceedings of the 4th International Workshop on Pro-
gramming Based on Actors Agents & Decentralized Control (Portland,
Oregon, USA) (AGERE! ’14). Association for Computing Machinery,
New York, NY, USA, 15–28.

[8] Sylvan Clebsch and Sophia Drossopoulou. 2013. Fully Concurrent
Garbage Collection of Actors on Many-Core Machines. SIGPLAN Not.
48, 10 (Oct. 2013), 553–570.

[9] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy
McNeil. 2015. Deny Capabilities for Safe, Fast Actors. In Proceedings
of the 5th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control (Pittsburgh, PA, USA) (AGERE! 2015).
Association for Computing Machinery, New York, NY, USA, 1–12.

[10] Mehdi Dastani. 2008. 2APL: A practical agent programming language.
Autonomous Agents and Multi-Agent Systems 16, 3 (2008), 214–248.

[11] Mehdi Dastani, JürgenDix, and Peter Novak. 2005. The First Contest on
Multi-Agent Systems Based on Computational Logic. In Proceedings of
the 6th International Conference on Computational Logic in Multi-Agent
Systems (London, UK) (CLIMA’05). Springer-Verlag, Berlin, Heidelberg,
373–384.

[12] Enrico Denti, Andrea Omicini, and Alessandro Ricci. 2001. Tu Prolog:
A Light-Weight Prolog for Internet Applications and Infrastructures. In
Proceedings of the Third International Symposium on Practical Aspects of

Declarative Languages (PADL ’01). Springer-Verlag, Berlin, Heidelberg,
184–198.

[13] Akshat Dhaon and Rem W. Collier. 2014. Multiple Inheritance in
AgentSpeak(L)-Style Programming Languages. In Proceedings of the
4th International Workshop on Programming Based on Actors Agents
& Decentralized Control. Association for Computing Machinery, New
York, NY, USA.

[14] Frank Dignum, David Kinny, and Liz Sonenberg. 2002. From desires,
obligations and norms to goals. Cognitive Science Quarterly 2 (2002),
405–427.

[15] Jürgen Dix and Yingqian Zhang. 2005. Impact: A Multi-Agent Frame-
work with Declarative Semantics. Vol. 15. 69–94.

[16] Philipp Haller andMartin Odersky. 2009. Scala Actors: Unifying thread-
based and event-based programming. Theoretical Computer Science
410, 2 (2009), 202 – 220. Distributed Computing Techniques.

[17] Andreas Herzig, Emiliano Lorini, Laurent Perrussel, and Zhanhao
Xiao. 2017. BDI Logics for BDI Architectures: Old Problems, New
Perspectives. KI - Künstliche Intelligenz 31, 1 (01 Mar 2017), 73–83.

[18] Carl Hewitt. 2010. Actor Model of Computation: Scalable Robust
Information Systems. arXiv:1008.1459 [cs.PL]

[19] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Proceedings of
the 3rd International Joint Conference on Artificial Intelligence (Stanford,
USA) (IJCAI’73). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 235–245.

[20] Koen V. Hindriks. 2009. Programming Rational Agents in GOAL.
In Multi-agent programming: Languages, platforms and applications.
Chapter 4, 119–157.

[21] C. Kaiser and Jean-François Pradat-Peyre. 2003. Chameneos, a con-
currency game for Java, Ada and others. In ACS/IEEE International
Conference on Computer Systems and Applications. IEEE, 62–70.

[22] Felipe Meneguzzi and Lavindra De Silva. 2015. Planning in BDI agents:
a survey of the integration of planning algorithms and agent reasoning.
The Knowledge Engineering Review 30, 1 (2015), 1–44.

[23] Felipe Meneguzzi and Michael Luck. 2009. Norm-based behaviour
modification in BDI agents. Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems, AAMAS 1,
177–184.

[24] Mostafa Mohajeri Parizi, Giovanni Sileno, and Tom van Engers. 2019.
Integrating CP-Nets in Reactive BDI Agents. In PRIMA 2019: Principles
and Practice of Multi-Agent Systems. Springer International Publishing,
305–320.

[25] Anand S. Rao. 1996. AgentSpeak(L): BDI Agents Speak out in a Logical
Computable Language. In Proceedings of the 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World: Agents Breaking
Away: Agents Breaking Away (Einhoven, The Netherlands) (MAAMAW
’96). Springer-Verlag, Berlin, Heidelberg, 42–55.

[26] Anand S. Rao and Michael P. Georgeff. 1995. BDI agents: From theory
to practice.. In Proceedings of the First International Conference on Multi-
Agent Systems (ICMAS1995). 312–319.

[27] S. Rodriguez, N. Gaud, and S. Galland. 2014. SARL: A General-Purpose
Agent-Oriented Programming Language. In 2014 IEEE/WIC/ACM In-
ternational Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), Vol. 3. 103–110.

[28] Yoav Shoham. 1993. Agent-oriented programming. Artificial intelli-
gence 60, 1 (1993), 51–92.

[29] Dhirendra Singh, Sebastian Sardina, Lin Padgham, and Geoff James.
2011. Integrating Learning into a BDI Agent for Environments with
Changing Dynamics. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence - Volume Volume Three
(Barcelona, Catalonia, Spain) (IJCAI’11). AAAI Press, 2525–2530.

[30] Simeon Visser, John Thangarajah, James Harland, and Frank Dignum.
2016. Preference-based reasoning in BDI agent systems. Autonomous
Agents and Multi-Agent Systems 30, 2 (2016), 291–330.

10

www.dl4ld.net
www.dl4ld.net
https://arxiv.org/abs/1008.1459

	Abstract
	1 Introduction
	2 Background
	2.1 Agent Oriented Programming
	2.2 Belief-Desire-Intention (BDI) model
	2.3 Actor model
	2.4 Related work

	3 AgentScriptCC
	3.1 AgentScriptCC DSL
	3.2 AgentScriptCC Execution Architecture
	3.3 Translation Method
	3.4 Tools for execution

	4 Benchmarks
	4.1 Token Ring
	4.2 Chameneos Redux
	4.3 Service Point

	5 Discussion
	5.1 Language
	5.2 Execution and Parallelism
	5.3 Low-level access
	5.4 Communication
	5.5 Performance Comparison

	6 Conclusion and Future developments
	Acknowledgments
	References

