eFLINT: a Domain-Specific Language for Executable
Norm Specifications

L. Thomas van Binsbergen
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
ltvanbinsbergen@acm.org

Robert van Doesburg
Leibniz Institute, University of Amsterdam / TNO
Amsterdam, The Netherlands
robertvandoesburg@uva.nl

ABSTRACT

Software systems that share potentially sensitive data are
subjected to laws, regulations, policies and/or contracts. The
monitoring, control and enforcement processes applied to
these systems are currently to a large extent manual, which
we rather automate by embedding the processes as dedi-
cated and adaptable software services in order to improve
efficiency and effectiveness. This approach requires such
regulatory services to be closely aligned with a formal de-
scription of the relevant norms.

This paper presents eFLINT, a domain-specific language
developed for formalizing norms. The theoretical founda-
tions of the language are found in transition systems and in
Hohfeld’s framework of legal fundamental conceptions. The
language can be used to formalize norms from a large variety
of sources. The resulting specifications are executable and
support several forms of reasoning such as automatic case as-
sessment, manual exploration and simulation. Moreover, the
specifications can be used to develop regulatory services for
several types of monitoring, control and enforcement. The
language is explained through an example, formalizing arti-
cles 6(1)(a) and 16 of the General Data Protection Regulation
(GDPR). A prototype implementation and formal definition
of eFLINT are provided as supplementary material.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

GPCE, Generatic Programming: Concepts & Experiences, 2020

© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Lu-Chi Liu
University of Amsterdam
Amsterdam, The Netherlands
Lliu@uva.nl

Tom van Engers
Leibniz Institute, University of Amsterdam / TNO
Amsterdam, The Netherlands
vanengers@uva.nl

CCS CONCEPTS

« Computing methodologies — Model development and
analysis; « Security and privacy — Information flow con-
trol.

KEYWORDS

normative modeling, domain-specific language, policy en-
forcement, GDPR, executable specifications

ACM Reference Format:

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom
van Engers. 2020. eFLINT: a Domain-Specific Language for Exe-
cutable Norm Specifications. In Proceedings of GPCE. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 MOTIVATION

Governmental institutions provide services to citizens and
companies that are primarily defined in laws and regula-
tions. However, in practice there is often no clear connec-
tion between the software systems that support or provide
these services and the laws and regulations that govern them.
Similarly, business processes are subjected to laws and (in-
ter)national regulations as well as internal policies, branch-
wide codes and contracts. In both government and business,
a direct connection between a software’s implementation
and the norms that govern the software’s operations is highly
desirable. A direct connection makes the software easier to
validate and increases the software’s maintainability with re-
spect to following changes in regulations and policies. More-
over, with a direct connection it is possible to explain the
actions taken within a software system to stakeholders in
terms of the relevant norms. Our approach is to automate
the required monitoring, control and enforcement processes,
that currently are predominantly manual processes, as dedi-
cated and adaptable regulatory services. To improve trust,
the regulatory services are based on formal specifications of
the relevant norms that can be verified in isolation.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

GPCE, Generatic Programming: Concepts & Experiences, 2020

This paper presents eFLINT, a domain-specific language
(DSL) for formalizing norms as executable specifications.
Compared to existing languages, eFLINT is novel in several
respects and is most similar to languages based on the event
calculus such as Symboleo [28] and InstAL [20]. A significant
body of work exists concerning the formalization, analysis
and enforcement of specific kinds of norms [14] such as poli-
cies for access control [29], network policies [1] (e.g. firewall
configurations) and contracts [27, 28]. Instead, eFLINT is de-
signed for describing a wide variety of normative sources
such as laws, regulations, policies and contracts. Other for-
mal languages for expressing norms are based on deontic
logics [12], action logic [15], defeasible logic [10, 18]. Some
of these languages are not suited to capture some important
aspects of norms such as the actors bound by the norms
and the activities regulated by these norms. An important
aspect of eFLINT is that the language is action-based and
that the normative positions of actors are derived from the
actions they can perform (permissions) or are expected to
perform (duties) at a given moment in time. Moreover, the
language supports the legal concept of power — the ability
to grant (or remove) permissions or duties of (other) actors.
The benefit of the action-based approach is that checking
the compliance of a scenario or software implementation is
simplified because scenarios and software implementations
are inherently action-based. Together, these features enable
eFLINT for various types of applications requiring online or
offline compliance-checking, monitoring, traceability and
explainability.

This paper contributes by presenting eFLINT, discussing
its use in a variety of applications, reflecting on its design
and placing it in a wider context. The language is introduced
through an example in Section 3. In section 4 we explain how
eFLINT is used for offline and online compliance checking.
Section 5 formalizes the parts of articles 6 and 16 of the
GDPR (General Data Protection Regulation) that relate to
‘consent’ and the ‘right to rectification’ as a case study. After
a reflection on the features and design of the language, the
language is compared to relevant alternatives in Section 6.

2 LEGAL FOUNDATIONS

In this section we summarize the normative theory that un-
derpins eFLINT. The theory is explained in reference to legal
case analysis, involving the processes of interpretation, qual-
ification and assessment, visualized in Figure 1. The diagram
distinguishes between physical reality (left-hand side) and
the institutional reality of Searle’s social theory [26] (right-
hand side) as the reality in which actors interact physically
with objects and each other on the one hand, and certain
abstractions over that physical reality on the other hand.

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

physicalreality - - - - - | institutienal reality - - -

sources of norms ' understanding of norms
|

. | ' .
Interpretation

@ qualziﬁcation

actions, events, objects

Figure 1: Schematic overview of the processes of inter-
pretation, qualification and assessment.

The institutional abstractions are twofold: a general under-
standing of the norms relevant to a case (top right) and the
understanding of the case itself as a narrative (bottom right,
henceforth called scenario): a series of actions, events and
observations that may or may not be compliant.

The process of assessment determines whether a partic-
ular scenario is compliant with a particular understanding
of the norms. In order to assess a scenario, it is first neces-
sary to interpret the sources of norms one deems relevant to
the case (top left), such as legal documents, regulations and
policy descriptions. The process of qualification attributes
institutional meaning to certain actions performed by actors,
events and objects (bottom left). Such qualification is always
context-bound which makes the qualification process a sub-
tle interplay between the observations and the interpreted
norms applicable to those observations. For example, the ac-
tion of raising one’s arm is typically qualified as “requesting
permission to ask a question” in a classroom but as “placing
a bid” during an auction.

The normative aspect of eFLINT is based on the legal’
framework constructed by Hohfeld for analyzing courthouse
activities [13]. The first core aspect of Hohfeld’s framework is
the observation that the ‘normative position’ of an individual,
such as the individual being deemed to having a ‘duty’ or
‘power’, is always with respect to another individual. For
example, if person X has the duty to do A, then there is a
person Y having a ‘claim’ to A being done (and benefiting
from A). In this example, X and Y are said to be in a duty-
claim relation with respect to action A. The second core
aspect of Hohfeld’s framework is the explicit consideration of
change caused by an actor exercising a ‘power’ (performing
an action), possibly having an impact on the actor with the

! Although Hohfeld developed the framework for the analysis of courthouse
activities, we apply its concepts more generally and speak of “normative
positions” rather than “legal positions” and “normative relations” rather
than “legal relations” in this paper.



eFLINT: a Domain-Specific Language for Executable Norm Specifications

correlative ‘liability’ position. For example, if X and Y are
in a power-liability relation with respect to A, then X has
the power to do A and Y is liable to — in the sense of ‘being
bound to’ - the effects of A.

eFLINT sets itself apart from other formal languages for
norm specifications by integrating both core aspects of Ho-
hfeld’s framework, i.e. describing ‘normative relations’ rather
than individual positions and allowing normative relations
to change over time by the effects of actions and events.

3 LANGUAGE OVERVIEW

The dual nature of institutional reality is reflected in the
design of eFLINT. An interpretation? is formalized as a collec-
tion of type declarations. A scenario is formalized as a series
of statements. The statements describe a trace in the tran-
sition system induced by the declarations of act-types and
event-types. Figure 2 gives the (simplified) abstract syntax of
eFLINT specifications as sequences of type declarations. The
operators that form Boolean expressions and instance expres-
sions® have been omitted; they will be introduced alongside
the case study in Section 5. An example specification is given
by the listings in Figure 4. The example captures the norm
that a child has the power to ask a legal parent (i.e. a natural
or adoptive parent) for help with their homework, result-
ing in a duty for the parent to help. Types can be redefined
by subsequent type declarations. This is convenient from a
perspective of reuse: a generic interpretation can be used
by several applications by letting each application specialize
certain types to the domain of the application.

Figure 3 gives the abstract syntax of scripts as sequences
of statements and queries. An example script is given by
the listings of Figure 5. In the example scenario, Alice is
a natural parent of Bob, Bob asks Alice for help, but Alice
only helps when the homework is already due, causing the
help-with-homework duty to be violated. For automatic case
assessment, it is convenient to use four input files: a file
containing the type-declarations of a generic model, a file
re-declaring types according to a concrete or specialized
domain, a file containing initialization statements and a file
that contains the statements of a scenario. This separation
across files is practical as there is a conceptual one-to-many
relation between these files (in the order listed above). For
example, many scenarios can start from the same initial state.

The declaration of a type determines the set of values (in-
stances) of that type, inherited either from an atomic type
(e.g. strings or integers) or a composite record-type (repre-
sented as tuples in the abstract syntax). Record-types define
relations over concepts (when they have two or more fields,

2We use “interpretation” also for the result of the process of interpretation.
3 An instance expression computes instances of declared types.

GPCE, Generatic Programming: Concepts & Experiences, 2020

x € type_ids =
s € strings = ...
z€ Z == {0,1,...,-1,-2,...}

i € instance_exprs
b € boolean_exprs

6 € domains u= strings
| string_set(s1,...,Sn)
| Z
| int_set(z1,...,zpn)
| product(xi,...,x,)
|

fdecl(d, 6, bg)

adecl(dy, dy, dy, d*, b*, c*, bg)
edecl(dy, b’ c*, bg)

ddecl(dy, dy, dy, d*, b’ bg)

fdc € fact_decls
adc € act_decls
edc € event_decls
ddc € duty_decls

c € posts = create(i) | terminate(i)
dc e decls = fdc| adc|edc|ddc| ...
specifications := dc”*

Figure 2: Abstract syntax of eFLINT specifications.

elems s= s |z| tuple(vi,...,vn) | ...
v e instances = elems X type_ids
o € configs = P(instances)
t € stmts u= create(i) | terminate(i) | trigger(i)
q € queries == query(b)
scripts x= (t]q)

Figure 3: Abstract syntax of eFLINT scenarios.

e.g. natural-parent) or establish predicates over a concept
(when they have one field, e.g. homework-due). An institutional
model of the physical world at a particular moment in time
is represented by the values, referred to as a facts, deemed
to hold true at that moment?. Sets of facts are the configura-
tions in the transition system induced by the specification. If
a record of type homework-due is in configuration o, then the
person at the child field of the record is deemed to having
their homework due in the context captured by o. The accu-
racy of this fact depends on the accuracy of the qualifications
that caused this instance to hold, e.g. the +homework-due (Bob)
statement in Figure 5.

Type declarations have an optional derivation clause (Holds
when). A derivation clause is a Boolean expression® (bg in the
abstract syntax) that computes which instances of the type
hold true in a given configuration. The derivation clause of
legal-parent determines that, for every parent P and child C,

“The facts of eFLINT are the fluents of the event calculus, see Section 6.
SThis is a simplification. Derivation clauses are fully explained in Section 5.



GPCE, Generatic Programming: Concepts & Experiences, 2020

Fact person Identified by String
Placeholder parent For person
Placeholder child For person
Fact natural-parent Identified by parent x child
Fact adoptive-parent Identified by parent * child
Fact legal-parent Identified by parent x child
Holds when adoptive-parent(parent,child)
|| natural-parent(parent,child)
Act ask-for-help

Actor child
Recipient parent
Creates help-with-homework (parent,child)

Holds when legal-parent(parent,child)
Fact homework-due Identified by child
Duty help-with-homework

Holder parent

Claimant child

Violated when homework-due(child)
Act help

Actor parent

Recipient <child

Terminates help-with-homework (parent,child)
Holds when help-with-homework (parent,child)

Fact person Identified by Alice, Bob, Chloe, David‘

Figure 4: Type declarations capturing (normative) con-
cepts (top) and a domain of discourse (bottom).

+natural -parent (Alice, Bob).
+adoptive-parent(Chloe, David).

ask-for-help(Bob, Alice).

+homework -due (Bob). // homework deadline passed
?Violated(help-with-homework (Alice,Bob)).
help(Alice,Bob).

Figure 5: A script consisting of an initial state
(top) and a scenario with a query (bottom). Duty
help-with-homework is violated after homework is due.

legal-parent(P,C) holds true if and only if adoptive-parent(P,C)
or natural-parent(P,C) holds true. A fact-type is either a ‘de-
rived fact’ or ‘postulated fact’, depending on whether it is
declared with a derivation clause. To ensure consistency, only
postulated facts can be created or terminated by statements.

act-, event- and duty-type declarations. Act-, event- and
duty-types are fact-types with additional meaning. An act-
type declaration consists of a performing actor-type (Actor), a
recipient actor-type (Recipient) and optional further related
types (Related to). An action® - an instance of an act-type —
is a record value with a field for each of the associated types

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

(a tuple(vy, . . .,vy)). An act-type declaration also associates
zero or more pre-conditions and post-conditions with the
act-type. An action A is enabled in ¢ if A is in ¢ and if its
pre-conditions evaluate to true in o. If A is enabled in o,
then the performing actor X and the recipient actor Y are
in a power-liability relation with respect to A. The post-
conditions associated with an act-type determine the effects
its instances have when executed by a statement. The effects
are to create or terminate facts, thus giving rise to a new
configuration (and possibly updated normative relations).

The institutional view on the world can also change by
physical actions for which there is no institutional counter-
part. For example, there is no direct institutional counterpart
to ‘changing address’ in the GDPR even though relocations
influence the accuracy of personal data. Moreover, the world
also changes due to natural events such as earthquakes, fires
and the passage of time. For these reasons, erLINT distin-
guishes between actions and events. An event-type declara-
tion (not in the example) is essentially an act-type declaration
without a performing actor or recipient actor.

A duty-type declaration contains the type of the duty
holder, the type of the claimant and optional further related
types. A duty - an instance of a duty-type - is a record value
with a field for each of the types. A duty-type declaration
has zero or more violation-conditions. If a duty holds true
in configuration o, then the holder and claimant of the duty
are in a duty-claim relation in o. The holder of a duty is in
violation of the duty (and the claimant has a valid claim)
according to ¢ if the duty holds true in ¢ and if one of the
violation-condition holds true in o. To avoid violating a duty,
an actor must perform an action that terminates the duty
(e.g. help) before one of the violation conditions holds.

transitions and compliance. In summary, a set of facts
forms a configuration representing an institutional view on
the physical world at a particular moment in time. For any
given configuration it is possible to determine the normative
relations between actors. Actions and events change configu-
rations when executed, potentially modifying the normative
relations between actors. Since actions and duties are also
facts, an actor may have the power to assign duties or to
grant powers to others. The post-conditions of action- and
event-types give rise to a transition system. The execution of
an action or event triggers a transition by removing and/or
inserting facts from/to the current configuration. For exam-
ple, the statement ask-for-help(Bob,Alice) (trigger(i) in the
abstract syntax) executes the action ask-for-help(Bob,Alice),
causing the creation of a duty for Alice. Individual facts can
also be created and terminated (create(i) and terminate(i)

®Instances of act-types are institutional actions. There is not necessarily an
institutional actions for every physical action or vice versa.



eFLINT: a Domain-Specific Language for Executable Norm Specifications

in the abstract syntax). For example, +homework-due (Bob) cre-
ates the fact that Bob’s homework is due (termination is
written with a minus symbol). The statements of a script
form a trace (sequence of transitions) in the transition sys-
tem. A quer)'(e.g.?Violated(help—with—homework(Alice,Bob)))
is a Boolean expression that is evaluated in the context of the
current configuration. The language also supports invariants,
essentially queries that are performed whenever a transition
gives rise to a new configuration.

A trace may be action-compliant and/or duty-compliant. A
trace is action-compliant if every transition on the trace is
labeled with an event or action that is enabled in the source
configuration of the transition. A trace is duty-compliant
if no duties are violated in any of its configurations. These
notions are independent: a trace can be action-compliant,
duty-compliant, action- and duty-compliant or neither. As-
sessing a scenario is deciding whether it produces an action-
and duty-compliant trace, given an initial configuration. The
example scenario is action-compliant but not duty-compliant
as a violation occurs after the second statement.

A trace records the normative positions and relations of
all actors as they evolve over time and therefore provides
sufficient information to determine important details about
violations such as when they occurred and which actors were
responsible. This a crucial aspect: by recording traces, eFLINT
makes it possible to reproduce the entire decision making
process and to explain the decisions that have been made.

4 IMPLEMENTATION

The previous section explained eFLINT informally through an
example. A formal syntax, operational and static semantics
are available in the supplementary material of this paper. The
supplementary material also provides a prototype implemen-
tation of in Haskell. The details of the expression language
used by the eFLINT implementation have been omitted in
the previous section and are discussed alongside the GDPR
case study in the next section. The transition system seman-
tics of eFLINT depends only on the expression language in
that there are Boolean expressions and instance expressions.
Alternative expression languages can thus be used by alterna-
tive implementations, e.g. using objects rather than records
to structure data. Similarly, our implementation has inte-
gers and strings as atomic values, but other types of atoms,
such as floating points, are easily added. This section gives
an overview of the different applications supported by the
eFLINT implementation at the time of writing,.

automated assessment. One of the executables of the im-
plementation receives a specification and script and deter-
mines whether the scenario in the script is action- and duty-
compliant and whether all the queries are successful. The
output is either a list of violations and failed queries or a

GPCE, Generatic Programming: Concepts & Experiences, 2020

Available commands:

:<INT> trigger action or event <INT>
:force <INT> force action or event <INT>
:revert <INT> revert to configuration <INT>
:display :d show the current configuration
:options :o show available actions & events
:help :h show these commands

:quit :q end the exploration

or just type a <PHRASE>

#0 > +natural-parent(Chloe,David)
+legal -parent (Chloe,David)
+natural -parent (Chloe,David)
+ask-for-help(David, Chloe)
enabled actions & events:

1. ask-for-help(David,Chloe)

#1 > 1

+help(Chloe,David)
+help-with-homework (Chloe,David)
enabled actions & events:

1. ask-for-help(David,Chloe)

2. help(Chloe,David)

#2 > :2

-help(Chloe,David)
-help-with-homework(Chloe, David)
enabled actions & events:

1. ask-for-help(David,Chloe)

#3 > ?Violated(help-with-homework(Chloe,David))
query failed

#3 > :revert 2

enabled actions & events:

1. ask-for-help(David,Chloe)

2. help(Chloe,David)

#2 > +homework-due(David)
violated duty!: help-with-homework(Chloe,David)

Figure 6: Example interaction with the erLINT REPL.

JSON object representation of the produced trace. The JSON
output has been used to develop a simple web-interface. Be-
sides editing, the interface can be used to analyze traces by
inspecting the contents of, and the changes to, configura-
tions. The web-interface has been used in a MSc-level course
on ‘Policy Making and Rule Governance’, with user-feedback
feeding directly into the design of the language. Automatic
assessment is an important tool during the development of
eFLINT specifications as it facilitates testing and debugging.
Once a specification has been adopted, the primary purpose
of automatic assessment is to analyze concrete cases that
have observed or hypothetical cases that might arise. Both
are crucial, not only in the development of the specification,
but also as feedback to lawmakers and policymakers. As
part of future work we intend to add model checking to our
implementation, expanding the set of tools through which
confidence in the correctness of a specification is obtained.
eFLINT already supports safety properties in the form of
invariant declarations.




GPCE, Generatic Programming: Concepts & Experiences, 2020

exploration. To further support the aforementioned use
cases, the eFLINT implementation also supports manually
exploring the transition system induced by a specification.
The tool can run as a Read-Eval-Print Loop (REPL), loaded
with a specification and a script producing an initial state.
At the top-level, the REPL accepts declarations, queries and
statements, which can be mixed freely and produce immedi-
ate feedback. It is also possible to delete or re-declare types,
enabling on-the-fly updates to the specifications. After every
statement, the REPL reports violations of action- or duty-
compliance, changes to the configuration and any invariants
that were not upheld. The user can backtrack to a previously
visited configuration to explore an alternative route in the
scenario. An example interaction with the REPL is shown
in Figure 6. The REPL is loaded with the specification of
Figure 4. The interaction shows Chloe helping David in the
first explored branch. After backtracking, another branch is
explored in which homework is due before Chloe has helped.

During the first interaction in Figure 6, the REPL responds
with the information that the fact legal-parent(Chloe,David)
has been added to the configuration. This fact is derived
from the fact natural-parent(Chloe,David) pOStulated by the
user. In order to make this derivation, the implementation
has enumerated all possible instances of legal-parent and
evaluated the derivation clause for each. Enumerating all
instances of types is possible when working with a small’,
finite domain. However, when checking the compliance of
a running system, an application discussed below, an open-
ended domain is typically required. The ability to redefine
and specialize types in eFLINT enables us to reuse specifica-
tions across applications in which some require a finite and
others an open-ended domain. In the example of Figure 4, an
open-ended domain (the declaration of person initially does
not list its instances) is replaced by a finite domain. Reusing
specifications in both types of applications is also made possi-
ble by the pragmatic design choice to give different behavior
to the enumeration operator (Foreach, introduced in the next
section) depending on whether it enumerates instances of
a finite or infinite type. In the latter case, the operator only
enumerates the instances of the type that hold true in the
current configuration. Note that a domain is finite if all of
the atomic types have finite sets of instances, because then,
by induction, all record types are finite too.

normative actors. The back-end of the REPL also forms
the basis of a TCP server. The server is loaded with a specifi-
cation and waits for incoming declarations, statements and
queries on a given port. The server is used to integrate eFLINT
specifications in arbitrary software systems. To develop and
experiment with regulatory services for enforcement, we

7In order not to suffer from combinatorial explosion.

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

use the Akka framework® for actor-oriented programming
in Scala. Actor-oriented programming can be used to develop
or model complex, distributed systems. The components of
a software system are implemented as actors, with message-
passing as the only form of communication between them.

Central to our approach is the notion of a ‘normative actor’
that administers an eFLINT specification. A normative actor is
created with one or more specification files and starts its own
server instance. The first file contains the type declarations of
a high-level norm specification. The additional files provide
more declarations, specific to the domain, and may redefine
some types towards a specialized domain.

A survey of various software architectures that incorpo-
rate policy enforcement mechanisms [22, 23, 33, 34] has re-
vealed at least the four types of enforcement listed below
Our implementation of normative actors in Scala enables
these four types of enforcement.

e Ex-ante enforcement of permissions: ensuring that an
actor has permission to execute a particular action
before it is performed and blocking the action if there
is no permission

e Ex-ante enforcement of positive duties: informing actors
of their duties to perform certain actions

o Ex-post enforcement of violations of prohibitions: apply-
ing some form of resolution to the observation that an
action has been performed which was not enabled

o Ex-post enforcement of violated duties: applying some
form of resolution to a violated duty

A normative actor responds to eFLINT statements and
queries received by as messages. The response to a query is
simply whether the query holds true. Actors can send queries
to normative actors to let the responses guide their behav-
ior. For example, an actor can ensure action-compliance by
checking whether an action is enabled before performing it.

Receiving a statement causes the normative actor to up-
date its internal state (a configuration) by executing the state-
ment. The resulting transition might impact other actors
in the system and they will be informed by the normative
actor accordingly. If a duty is created or violated by the tran-
sition, the holder and claimant of the duty are informed.
Similarly, if an action is enabled by the transition, the per-
forming and recipient actor of the action are informed. If
the transition was triggered by a disabled action, the per-
forming and recipient actor of the action are informed of
this violation. The actors receiving such messages can re-
act in several meaningful ways. For example, the claimant
of a violated duty might have the power to notify an au-
thority that, in turn, has the power to place a penalty on
the holder of the violated duty. Another common use case
is for the claimant of a new (but not yet violated) duty to

8https://akka.io


https://akka.io

eFLINT: a Domain-Specific Language for Executable Norm Specifications

start a timer that runs out when the claimant thinks the
duty should have been fulfilled (terminated). The example
of Figure 4 can be extended with a teacher that places the
complete-homework duty on children. When the timer expires,
the claimant (teacher) sends a message to the normative actor
to communicate this observation (in the form of a fact, e.g.
homework-due) possibly causing duties to be violated (e.g. the
duty complete-homework, but perhaps also help-with-homework).
In our experiments with GDPR, the event rectification-delay,
creating the fact undue-rectification-delay, is an event trig-
gered by the use of a timer.

The actor sending a statement to a normative actor may
be a neutral observer and, for example, not the performer
or recipient of an action. The normative actor responds to
the observer with a summary of the effects of the transition,
similar to the output produced by the command-line REPL.
Normative actors can thus be used in a variety of ways.

A system can have one or more monitoring actors mak-
ing qualifications based on the observed communication
between other actors. These qualifications are sent to nor-
mative actors that instantiate the norms considered by the
monitoring actor. In this case, the communications of nor-
mative actors might be restricted to monitoring actors only.

In a multi-agent system (MAS), normative actors can be
internalized by agents, playing the role of a (moral, social, or
legal) conscience. An agent communicates with its internal
normative actors to possibly update its beliefs, desires and
intentions. Every normative actor of an agent embodies the
particular interpretation of a set of norms adopted by the
agent. In this case, the communications of normative actors
should be restricted to their encompassing agent.

5 CASE STUDY: GDPR

The erLINT specification developed in this section captures
the following aspects of the GDPR [19]: the requirement to
receive a data subject’s consent prior to data processing and
the subject’s ‘right to rectification’. The purpose of this sec-
tion is to dive deeper into the details of the language, such as
its expression language, and to demonstrate its expressivity
in connection to a realistic case. The presented code snippets
form the GDPR component of a larger case study regard-
ing the Know Your Customer (KYC) requirements placed on
financial institutions. This case study is performed in col-
laboration with ABN AMRO and ING. In order to improve
the accuracy of customer risk assessment, the banks are will-
ing to share customer data under certain conditions. The
banks wish to keep certain data secret, e.g. if the data pro-
vides a competitive advantage. Moreover, the banks want
to demonstrate compliance with KYC and GDPR require-
ments. The goal of the wider case study is to experiment
with architectures for a data sharing system, incorporating

GPCE, Generatic Programming: Concepts & Experiences, 2020

formalizations of the internal policies, sharing agreements,
guidelines and regulations that govern the system in order
to demonstrate compliance. As an academic case, the study
is particularly interesting in that it requires reasoning about
multiple norm specifications, each with their own ontolo-
gies of concepts. Moreover, satisfying a duty in one policy
might cause a violation in another, demonstrating the need
for priorities between norms.

The KYC case consists of three eFLINT specifications of
less than a 100 lines of code for which one or more normative
actors (see previous section) are created. Besides the GDPR
specification, the case involves an internal policy specifica-
tion and a sharing agreement. Every bank has their own spe-
cialization of the internal policy. The eFLINT specifications
are kept small, formalizing only specific rules and norms
to focus on their interaction at the level of policy design,
the level of component behavior and the level of component
implementation. The system consists of actors representing
banks, employees and clients. Each bank communicates with
a normative actor loaded with GDPR and a normative actor
loaded with the bank’s internal policy. The former notifies
banks (controllers) and clients (subjects) about (violated) du-
ties and actions. The latter notifies banks and employees.
The banks also communicate with a single normative actor
that embodies the sharing agreement.

5.1 Concept definitions

The following code fragment below captures the GDPR con-
cepts ‘subject’ (a natural person) and ‘data’.

Fact subject
Fact data

Fact subject-of Identified by subject * data

A fact-type declaration without an Identified by clause
defaults to Identified by String.

expressions. Consider the following expression.

(Exists subject: subject-of(subject,data))

Expressions are literals, variables or operators and con-
structors applied to other expressions. Type names can occur
as variables in expressions, such as subject and data above.
Type names can also occur as constructors in expressions,
for example subject-of above. There is no ambiguity between
a type name occurring as a variable or as a constructor be-
cause only constructors are followed by (zero or more) formal
arguments within parentheses.

Constructor application can be written in two styles. The
first style — familiar from functional and logic programming
- requires as many arguments as the number of fields of
the constructed record and the arguments must be writ-
ten in the same order as the fields are written in the type-
declaration. An example is subject-of (subject,data). In the




GPCE, Generatic Programming: Concepts & Experiences, 2020

second style, field names are explicitly mentioned. For exam-
ple, in subject-of (subject=subject,data=data) the name subject
occurs as a field name on the left-hand side of the equal sym-
bol and as a variable on the right-hand side. In this style,
formal arguments can be written in any order and can also
be omitted. If a formal argument for field x is omitted, then it
defaults to x = x. The constructor application of this example
can thus be written as subject-of (). If the variable subject-of
is bound to a record, then subject-of.subject evaluates to the
value of the field subject of that record (projection).

accumulators. The example expression shows that eFLINT
is based on first-order logic with existential and universal
quantification via the Exists and Forall operators. The in-
ner expression of a quantifier, appearing behind the colon,
must be a Boolean expression. However, the sub-expression
subject-of (subject,data) of the example is an instance ex-
pression when taken out of context. The static semantics of
eFLINT rewrites this expression to the Boolean expression
Holds(subject-of (subject,data)). The Holds operator checks
whether the instance computed by its operand holds true in
the current configuration.

The example is expression is equivalent to the following:

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

are Count and Sum for counting instances and summing inte-
gers.

derivation clauses. The example expression was taken from
the following fact-type declaration with a derivation clause.

Fact personal-data Identified by data Holds when
(Exists subject: subject-of(subject,data))

The derivation clause determines that data is personal data
if it has a subject, which closely resembles the definition of
“personal data” in Article 4(1) of the GDPR.

Derivation clauses come in two forms: a Holds when clause
with a Boolean expression or a Derived from clause with an in-
stance expression. The instance expression of a Derived from
clause produces all the instances of the type that are deemed
to hold true by the clause. Any variables not explicitly bound
by occurrences of Exists, Forall or Foreach in this instance
expression are implicitly bound by an outermost Foreach. A
Holds when clause is syntactic sugar for a Derived from clause.
The above fragment is equivalent to the following:

Fact personal-data Identified by data Derived from
(Foreach data: personal-data() When
(Exists subject: subject-of(subject, data)))

Or (Foreach subject: subject-of(subject,data))

The semantics of Foreach are to evaluate its inner expression
multiple times, each time binding its binders (the comma-
separated variables before the colon) to a different combi-
nation of instances of their respective types. For example,
when the above expression is evaluated, the inner expression
is evaluated once for every possible binding of the variable
subject to an instance of the type subject. The behavior of
Foreach differs depending on whether all its binders refer to
types with finite numbers of instances. If this is the case,
then the binders are bound to all possible combinations of
instances of their types. If one or more of the types does
not have a finite amount of instances, only the instances of
these types that hold true in the current configuration are
enumerated instead. As mentioned in the previous section,
this design decision has been made to simultaneously accom-
modate applications with finite and open-ended domains.
The Foreach operator is non-deterministic in that it com-
putes multiple values. However, non-deterministic expres-
sions are only allowed in certain places, such as in the post-
conditions of actions and as the operand of an accumulator.
An accumulator is an operator that reduces a sequence of
values to a single result (thus turning a non-deterministic
expression in a deterministic one). The or accumulator evalu-
ates to true if any of its inputs is true. Similarly, And evaluates
to true if all its inputs are true. Occurrences of Exists and
Forall desugar to an application of Foreach inside an applica-
tion of or or And respectively. Other examples of accumulators

The when operator is used in non-deterministic expressions
to filter out unwanted results. The operator evaluates to the
result of its first operand, but only if its second operand
evaluates to true.

In general, a Holds when clause with Boolean expression
[t] for a fact-type [x] with fields [a], [b] and [c] desugars to
Derived from (Foreach [a],[b],[c]: [xJ() When [t]). A Holds
when clause can therefore only be part of a fact-type dec-
laration with a record type. The desugaring shows that the
expression of a Holds when clause is evaluated in the context
of arecord instance to determine whether that instance holds
true. In the example, this is the instance personal-data(data
= data) for some instance of data.

5.2 Consent

This subsection formalizes Article 6(1)(b) on consent [19].
The following fragment defines the related concepts of data
controller, data processor, purpose and consent.

Fact controller
Fact processor
Fact processes Identified by
processor * data * controller x purpose
Fact purpose
Fact consent Identified by
subject * controller * purpose
Fact accurate-for-purpose Identified by
data * purpose

A controller is a legal entity collecting and processing the
data of a data subject. A processor is a legal entity storing or




eFLINT: a Domain-Specific Language for Executable Norm Specifications

processing data on behalf of a controller. An important aspect
of the GDPR is that a controller communicates the purpose
for which it is collecting and processing data and that the
subject gives explicit consent to processing’ the data for that
purpose. If the record of type consent that contains subject
S, controller C and purpose R holds true in a configuration,
then this means that S has given consent to C to collect
and process their data for purpose R. If the record of type
processes that contains processor P, controller C, data D and
purpose R holds true in a configuration, then this means that
P processes the data D on behalf of C for the purpose R.

The presented formulation abstracts over operations on
data by capturing all changes to data as replacements. Every
instance of data has at most one subject and at most one
instance of data is considered to be accurate for a particu-
lar purpose. These requirements have been formalized as
invariants. As discussed in Section 4, our implementation
runs every invariant as a query after every transition and re-
ports an error if the invariant’s expression does not hold true.
Invariants are thus useful to find inconsistencies in (applica-
tions of) specifications. The latter requirement is formalized
by the following invariant declaration.

GPCE, Generatic Programming: Concepts & Experiences, 2020

The when clause introduces an instance constraint (omitted
from the abstract syntax in Section 3), establishing a connec-
tion between the fields of the declared type. In this example,
the constraint determines that the new data is indeed new
and has the same subject as the old data. An instance con-
straint keeps the Foreach operator from enumerating ‘invalid’
instances of the declared type.

The definition of data-change refers to multiple instances of
data. To support multiple such references, variables can have
‘decoration’ in the form of integer numbers or prime charac-
ters at the end of their name (e.g. data1, data2, and data'). The
user can also add their own variable names with a Placeholder
declaration. In the fragment above, the name new-data is in-
troduced as a placeholder for instances of the fact-type data.
Note that the constructor application subject-of () has data
as an implicit argument because this is the name of one of
its fields.

The act-type declaration of give-consent, shown below, de-
scribes the power of subjects to giving consent to controllers.
The Related to clause reflects that consent is given for a spe-
cific purpose.

Invariant accuracy-for-purpose
(Forall subject,purpose,data,data': data == data'
When subject-of ()
&& subject-of (data=data')
&& accurate-for-purpose ()
&& accurate-for-purpose(data=data'))

Act give-consent
Actor subject
Recipient controller
Related to purpose
Conditioned by !consent()
Creates consent()

When the postal address of a bank’s client changes, the
currently held postal address is no longer accurate for the
purpose of building a KYC client profile. However, there is
no definition of an action for clients (subjects) to change
their addresses because relocation is not a GDPR notion.
Instead, an instance of the data-change event (defined below)
is triggered when a change in address is observed. In our
wider case study, a behavioral model captures the process
of communication between clients and bank employees. In
this model, when an employee receives updated information
from a client, the data-change event is triggered by sending
a message to the normative actor that administers GDPR
compliance on behalf of the employee’s bank.

The event data-change captures arbitrary changes to data.

Event data-change
Related to data, new-data, purpose
When data != new-data
&& subject-of () && subject-of(data = new-data)
Terminates accurate-for-purpose(data, purpose)
Creates accurate-for-purpose(new-data, purpose)
Holds when accurate-for-purpose(data,purpose)

The (pre- and post-) conditions of an act-type are evalu-
ated in an environment that binds the field names of the
type. For example, to determine the effects of the instance
give-consent(Alice,Bank,ClientProfile), the variable subject is
bound to Alice, the variable controller is bound to Bank and
the variable purpose is bound to ClientProfile. These bind-
ings are used as the (implicit) arguments to the constructor
application consent(). The pre-condition of give-consent pre-
vents repeated execution of the same instance of give-consent
(although one can argue that the power to give consent is
unconditioned).

The act-type collect-personal-data given below determines
that consent must have been given by the subject for the
purpose for which the data is being collected and that the
data must be accurate for this purpose. If, in physical real-
ity, multiple processors process the collected data, then the
institutional action collect-personal-data is to be executed
multiple times, with different processor arguments.

Placeholder new-data For data

Consent is one of several grounds for lawfully processing personal data.

Act collect-personal -data
Actor controller
Recipient subject
Related to data, processor, purpose
When subject-of ()
Conditioned by consent() &&
accurate-for-purpose ()




|

GPCE, Generatic Programming: Concepts & Experiences, 2020

Creates processes()

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

5.3 The right to rectification
Article 16 of the GDPR states [19]:

The data subject shall have the right to obtain from
the controller without undue delay the rectification
of inaccurate personal data concerning him or her.
[.]

The interpretation we formalize contains:

(1) the power for the data subject to demand rectification
when the data processed by the controller is inaccurate
for the purpose it is processed

(2) aduty held by the controller to rectify the data without
undue delay when the subject demands it

(3) the controller is relieved of this duty once their pro-
cessors start using the subject’s accurate data instead

The fragment below formalizes (1) as an act-type.

Event rectification-delay

Related to controller, purpose, subject
Creates undue-rectification-delay()
Holds when rectification-duty()

&& !undue-rectification-delay ()

The controller is relieved of the rectification-duty when
its processors start using accurate data for the given purpose.

Act demand-rectification

Actor subject

Recipient controller

Related to purpose

Conditioned by (Exists data, processor:

subject-of () && processes() &&
laccurate-for-purpose())
Creates rectification-duty ()

Act rectify-personal -data
Actor processor
Recipient subject
Related to controller, purpose
Conditioned by processes() When subject-of ()
Terminates
processes () When subject-of (),
rectification-duty () When last-inaccurate(),
undue-rectification-delay() When
last-inaccurate ()
Creates
processes () When subject-of () &&
accurate-for-purpose ()
Holds when rectification-duty ()

The action demand-rectification is enabled for a subject if
there is a processor that, on behalf of the controller, processes
inaccurate personal data of the subject. The effect of the
action is to place the duty (point (2) above) on the controller.

The duty is defined by the following duty-type declaration.

Duty rectification-duty
Holder controller
Claimant subject
Related to purpose
Violated when undue-rectification-delay()

Fact undue-rectification-delay Identified by
controller * purpose * subject

Since accuracy depends on purpose, the duty-claim relation
between controllers and subjects is related to a purpose.

Like the conditions of act-types, a violation condition is
evaluated in an environment binding the fields of the types.
The rectification-duty is violated whenever there is undue
delay in between the demand for rectification and the rec-
tification taking place. The usage of the term “undue delay”
in the article leaves room for discussion (deliberately). In
other words, potential cases of delay are subject to quali-
fication. The event rectification-delay, defined below, can
be triggered to indicate that the duty has been violated be-
cause of an undue delay. The event is only available when
the corresponding rectification-duty is active.

The pre-condition and the first (terminating) post-condition
of rectify-personal-data have implicit references to the un-
bound variable data. In pre-conditions, unbound variables
are existentially quantified implicitly. The pre-condition thus
states that the processor must process some personal data of
subject on behalf of controller.

Unbound variables in post-conditions are bound by an
implicit Foreach. A single post-condition can thus evaluate
to zero or more instances that will all be created or termi-
nated when executed. The first terminating post-condition
of rectify-personal-data terminates all personal data of the
subject that the processor is processing on behalf of the
controller. The second and third terminating post-condition
terminate the rectification-duty, held by the given controller
for the given subject and purpose, and remove the observa-
tion that there has been undue delay for that duty. This hap-
pens only if processor is the last processor to hold inaccurate
data about subject with respect to purpose. If a post-condition
attempts to terminate a fact that does not hold, then this is
simply ignored and the execution of the action proceeds nor-
mally. This design choice is symmetric with the decision that
a configuration is a set of facts, i.e. that there are no dupli-
cates of facts. A creating post-condition that attempts to add
a fact that already holds true simply has no effect (besides the
other facts that it might add). The creating post-condition
of rectify-personal-data creates the fact that represents that
accurate data about the subject is processed. This holds for
at most one instance of data, because of the assumption men-
tioned earlier that for every subject and purpose at most one
instance of accurate-for-purpose holds true.




eFLINT: a Domain-Specific Language for Executable Norm Specifications

The predicate that determines whether a processor is the
last processor to hold inaccurate data for a given subject and
purpose is defined below.

Fact last-inaccurate Identified by
processor * controller * subject * purpose
Holds when (Forall processor', data
processor == processor'
When processes(processor=processor ')
&& subject-of ()
&& laccurate-for-purpose())

The presented interpretation of the right to rectification
appears to make it impossible for controllers to terminate
their own rectification-duty. However, note that the speci-
fication captures an institutional perspective and does not
describe physical behavior. From the perspective of the GDPR
it is irrelevant how a processor decides whether to rectify
the data. For example, the processor may desire to adhere to
a contract made with the controller. In our KYC case, this is
the sharing agreement, which is formalized separately.

5.4 Reflections

The GDPR case study presented in this section demonstrates
that eFLINT can be used to formalize, rather concisely, norms
described in significant, real-world regulations. Although
not shown, the formalization can be used to assess concrete
cases and can be used to reason about the compliance of
running systems. In future work we intend to give a com-
prehensive account of a generic data-sharing architecture
that involves normative actors for regulatory services, show-
ing in particular how multiple eFLINT models co-exist and
how eFLINT is used to enforce compliance of software with
respect to multiple regulations, policies and contracts.

In the design of eFLINT, focus has been on the possibility
to simultaneously use specifications in isolation - typically
with a finite domain - as well as in in running systems — typ-
ically with an open-ended domain. To this end, the language
has a REPL-oriented design, supporting manual exploration
and enabling external systems to trigger actions and events.
This motivation guided other design choices as well, e.g. the
semantics of Foreach and the ability to redefine types to form
specialized domains. For example, the GDPR specification
does not give structure to the data concept. As part of the
KYC experiments, data is redefined and concretized to be
about customer profiles with attributes such as country code
and address. Crucially, this change does not demand changes
to any of the other types; the specification remains valid.

Omitting formal arguments in constructor applications
has significantly improved the brevity of the GDPR specifi-
cations. Moreover, by hiding the structure of data, clauses of
type declarations read almost like natural text and less like
programming instructions. For example, the pre-condition

GPCE, Generatic Programming: Concepts & Experiences, 2020

Conditioned by consent() reads more natural than Conditioned
by consent(subject,controller,purpose). The downside is the
effort required to reproduce the full constructor applications
whenever a detailed reading of the code is necessary. This
effort can be greatly reduced with IDE support, e.g. by show-
ing the declaration of a type when holding the cursor over a
constructor.

The distinction between derived facts and postulated facts
is a crucial feature of eFLINT. Derivation clauses effectively
describe logical implications of the kind that are common in
logical programming. However, the antecedents and conse-
quents are not limited to Boolean formulas. For example, in
the following code, the type wealth always has exactly one
instance corresponding to the sum of all people’s savings.

Fact person

Fact balance Identified by Int

Fact balance-of Identified by person * balance

Fact wealth Identified by Int Derived from
Sum(Foreach balance-of balance-of.balance)

An important aspect of postulated facts is that their validity
is established externally. In the current implementation, facts
are proactively provided by an external system. However,
the implementation can be extended to support on-demand
request. Determining the validity of a fact can then be del-
egated to a relevant authority, e.g. a health-care provider
confirming the validity of a receipt to supports an insurance
claim.

Further reflections are provided in comparison to related
work.

6 RELATED WORK

The aspects of norms automated by software are roughly
divided into structural aspects — such as production, instan-
tiation and publication — and dynamic aspects — such as
implementation, modification, termination, monitoring and
enforcement. On the structural side, standards have been
developed for the digital representation of contracts (e.g.
Oasis eContracts [6]) and for referring to sources of law
(e.g. MetaLex, Akomo Ntoso, Juriconnect and ECLI). Type-
declarations in eFLINT can easily be extended with references
to sources, e.g. using Metalex [2], making it possible to re-
late components of traces in the transition system to sources,
further enhancing explainability. Natural language process-
ing can assist with the interpretation process, introducing
the necessary structure to allow contracts to be analyzed by
software [4, 31]. However, legal experts and policy makers
are not all programmers, and certain information required
to compute with norms is not present in sources, e.g. the
structure of, and relations between, values. This observation
has motivated and influenced the development of eFLINT.




GPCE, Generatic Programming: Concepts & Experiences, 2020

The computational theory underneath eFLINT is most sim-
ilar to event calculus [16] and its simplified variants [24]. In
the variants of [5, 21], time is represented as a sequence
of (distinct) time points. At each time point, certain flu-
ents are stated to hold true by the HoldsAt(f,t) predicate
(with f a fluent and t a time point). Events initiate or ter-
minate fluents at certain time points according to the predi-
cate Initiates(e, f,t) or Terminates(e, f, t) (with e an event).
The judgment Happens(e, t) states that event e takes place
at time t. A collection of axioms determines that initiated
fluents hold true until they are terminated, that terminated
fluents do not hold until they are initiated (again) and that
the correct fluents are initiated and terminated after events
happen. The facts of eFLINT correspond to the fluents of
the event calculus and time points can be seen as identi-
fiers for configurations, i.e. HoldsAt(f,t) states that fact f
is in configuration ¢. The creating and terminating post-
conditions of actions and events in eFLINT correspond to
judgments involving the Initiates and Terminates predicates
respectively (for every possible time point). The derivation
clauses of fact-type declarations introduce rules of the form
HoldsAt(f1,t) A ... A HoldsAt(fx,t) = HoldsAt(fr+1,1t).
Expressions in eFLINT are thus interpreted as logical formu-
lae with Forall and Exists implying the usage of first-order
logic. Halpern and Weissman discuss the use of first-order
logic to describe and reason about policies, identifying in
particular a number of first-order languages with different
characteristics regarding the complexity of reasoning [11].
A scenario in eFLINT corresponds to a set of concrete judg-
ments of the form Happens(e, t). However, Happens(e, t) can
be stated for multiple instances of e and the same ¢, i.e. mul-
tiple events can happen simultaneously, which is not true
for the actions and events of eFLINT. Perhaps eFLINT is eas-
ily extended with declarations of composite events for this
purpose. The notions of action-violation and duty-violation
used by eFLINT are easily to formulate as logical predicates. A
translation from eFLINT to answer set programming based on
the connection with the event calculus is being considered.

Several formal languages for norms are based on exten-
sions to the event calculus such as Symboleo [28] and In-
stAL [20]. Besides the event calculus, Symboleo and eFLINT
are also related in their Hohfeldian foundations. In Sym-
boleo obligations and powers are instantiated by ‘triggers’.
In eFLINT, derivation clauses can be used for this purpose.
However, in eFLINT expressions are always evaluated in the
current configuration, whereas Symboleo is true to the event
calculus in that expressions concern the entire timeline.

Significant work exists about the formalization, analysis
and enforcement of specific kinds of policies such as policies
for access control and network policies [1] (e.g. firewall con-
figurations), of which a survey is given by Jabal et al [14]. The
eFLINT language is instead used to describe a wide variety

L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

of normative sources such as laws, regulations, policies and
contracts. The Margrave Policy Analyzer tool'” can be used
to reason about access control and firewall configurations,
supporting several formalisms such as the widely adopted
XACML for access control [29]. The tool implements several
types of reasoning, including Change-Impact Analysis [8].

Governatori et al. give a detailed overview on the inter-
pretation and lifecycle of contracts in [9]. In terms of the
elements described in [9], eFLINT is used to make interpreta-
tions explicit, including implied terms and norms that follow
from the integration of the contract in a wider context. With
the example of undue rectification delay and accuracy for
purpose, we have shown how open-textured terms are treated
by explicit qualification in eFLINT. The automated assessment
of scenarios, explained in Section 4, can assist with dispute
resolution. Section 4 also explains how normative actors can
be used for monitoring and enforcement. The implementation
also enables dynamic modification of contracts by removing
and redefining (act- and duty-) types on-the-fly. Several av-
enues are being considered to support the implementation of
contracts formalized in eFLINT, including smart contracts.

The idea of smart contracts was first introduced by Sz-
abo [30] as software (or hardware) that facilitates the ex-
changes of digital items of value between two or more par-
ties, with a security mechanism in place that ensures the
exchange at a risk low enough for all parties. With the ad-
vent of blockchain technology [17], smart contracts are now
typically understood as scripts that facilitate the execution of
‘transactions’. The underlying blockchain technology forms a
distributed ledger establishing consensus between potential
witnesses about the history of transactions. A popular smart
contract language is Solidity [7], running on the Ethereum
platform [3, 32]. The Flint language (unrelated to eFLINT)
offers a safer alternative to Solidity for writing smart con-
tracts running on Ethereum [25]. The Marlowe DSL is used
to develop smart contracts at a higher level of abstraction
that run on the Cardano platform [27].

7 CONCLUSIONS

We have presented eFLINT, a novel domain-specific modeling
language for formalizing norms found in laws, regulations,
policies, contracts and (data-sharing) agreements. The action-
oriented nature of the language makes it possible to apply
the language in a variety of applications such as case anal-
ysis and monitoring the compliance of a running system.
Pragmatic design decisions have been made to allow specifi-
cations to be reused for both types of reasoning. In particular,
the generic concepts encountered in laws and regulations
can be formalized at a high level of abstraction, whilst ap-
plications of these formalizations can effortlessly redefine

Ohttp://www.margrave-tool.org/


http://www.margrave-tool.org/

eFLINT: a Domain-Specific Language for Executable Norm Specifications

the concepts to match the domain of the application. Our
approach involves the explicit qualification of physical re-
ality as institutional facts, actions, events and duties. The
normative positions of actors evolve over time as actions are
performed and events take place. The resulting traces can
be used to diagnose violations and to provide explanations
about the decisions made based on the norms.

Acknowledgements. This work is supported by the NWO
project (628.009.014) Secure Scalable Policy-enforced Dis-
tributed Data Processing (SSPDDP), part of the NWO re-
search program Big Data: Real Time ICT for Logistics

REFERENCES

[1] E.S. Al-Shaer and H. H. Hamed. 2004. Modeling and Management of

—
S
[l

[10

(11

[12

[13

—

[t

[

—

]

—

—

—_

Firewall Policies. IEEE Transactions on Network and Service Manage-
ment 1, 1 (2004), 2-10.

A. Boer, R. Hoekstra, E. De Maat, F. Vitali, M. Palmirani, and B. Ratai.
2010. Metalex (Open XML Interchange Format for Legal and Legisla-
tive Resources). Technical Report CWA, Vol. 15710:2010. European
Committee for Standardization (CEN).

V. Buterin. 2018. Ethereum White Paper.

Ilias Chalkidis, Ion Androutsopoulos, and Achilleas Michos. 2017. Ex-
tracting Contract Elements. In Proceedings of the 16th Edition of the In-
ternational Conference on Articial Intelligence and Law (London, United
Kingdom) (ICAIL 2017). Association for Computing Machinery, 19-28.
https://doi.org/10.1145/3086512.3086515

Marinos Charalambides, Paris Flegkas, George Pavlou, Arosha K.
Bandara, Emil C. Lupu, Alessandra Russo, Naranker Dulay, Morris
Sloman, and Javier Rubio-Loyola. 2005. Policy Conflict Analysis
for Quality of Service Management. In 6th IEEE International Work-
shop on Policies for Distributed Systems and Networks (POLICY 2005),
6-8 June 2005, Stockholm, Sweden. IEEE Computer Society, 99-108.
https://doi.org/10.1109/POLICY.2005.23

OASIS LegalXML eContracts TC. 2007. eContracts Version 1.0 Com-
mittee Specification.

Ethereum. 2016. Solidity Documentation Online. https://solidity.
readthedocs.io. [Online, accessed 11 May 2020].

Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and
Michael Carl Tschantz. 2005. Verification and Change-Impact Analy-
sis of Access-Control Policies. In Proceedings of the 27th International
Conference on Software Engineering (St. Louis, MO, USA) (ICSE ’05).
Association for Computing Machinery, New York, NY, USA, 196-205.
https://doi.org/10.1145/1062455.1062502

Guido Governatori, Florian Idelberger, Zoran Milosevic, Régis Riveret,
Giovanni Sartor, and Xiwei Xu. 2018. On legal contracts, imperative
and declarative smart contracts, and blockchain systems. Artificial
Intelligence and Law 26, 4 (2018), 377-409. https://doi.org/10.1007/
510506-018-9223-3

Guido Governatori, Michael J. Maher, Grigoris Antoniou, and David
Billington. 2004. Argumentation Semantics for Defeasible Logic.
Journal of Logic and Computation 14, 5 (10 2004), 675-702. https:
//doi.org/10.1093/logcom/14.5.675

Joseph Y. Halpern and Vicky Weissman. 2008. Using First-Order Logic
to Reason about Policies. ACM Trans. Inf. Syst. Secur. 11, 4 (2008),
21:1-21:41. https://doi.org/10.1145/1380564.1380569

H. Herrestad. 1993. Norms and Formalization. In Proceedings of the 3th
International Conference on Artificial Intelligence and Law (ICAIL 1993).

ACM, 175-184. https://doi.org/10.1145/112646.112667
W.N. Hohfeld. 1913. Some Fundamental Legal Conceptions as Applied

in Judicial Reasoning. Yale Law Journal 23(1) (1913), 59-64.

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

GPCE, Generatic Programming: Concepts & Experiences, 2020

Amani Abu Jabal, Maryam Davari, Elisa Bertino, Christian Makaya,
Seraphin Calo, Dinesh Verma, Alessandra Russo, and Christopher
Williams. 2019. Methods and Tools for Policy Analysis. ACM Comput.
Surv. 51, 6, Article 121 (Feb. 2019), 35 pages. https://doi.org/10.1145/
3295749

Andrew ]. I. Jones and Marek Sergot. 1996. A Formal Characterisation
of Institutionalised Power. Logic Journal of the IGPL 4, 3 (06 1996),
427-443. https://doi.org/10.1093/jigpal/4.3.427

Robert A. Kowalski and Marek J. Sergot. 1986. A Logic-based Calculus
of Events. New Gener. Comput. 4, 1 (1986), 67-95. https://doi.org/10.
1007/BF03037383

S. Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system.
(2008).

Donald Nute. 2003. Defeasible Logic. In Web Knowledge Management
and Decision Support, Oskar Bartenstein, Ulrich Geske, Markus Han-
nebauer, and Osamu Yoshie (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 151-169.

Council of the EU. 2016. General Data Protection Regulation.

Julian Padget, Emad Elakehal, Tingting Li, and Marina De Vos. 2016.
InstAL: An Institutional Action Language. Law, Governance and Tech-
nology Series, Vol. 30. Springer Verlag, 101.

Alessandra Russo, Rob Miller, Bashar Nuseibeh, and Jeff Kramer. 2002.
An Abductive Approach for Analysing Event-Based Requirements
Specifications. In Logic Programming, 18th International Conference,
ICLP 2002, Copenhagen, Denmark, July 29 - August 1, 2002, Proceedings
(Lecture Notes in Computer Science, Vol. 2401), Peter ]. Stuckey (Ed.).
Springer, 22-37. https://doi.org/10.1007/3-540-45619-8_3

Michele Ruta, Floriano Scioscia, Saverio Ieva, Giovanna Capurso, Ag-
nese Pinto, and Eugenio Di Sciascio. 2018. A Blockchain Infrastructure
for the Semantic Web of Things. In Proceedings of the 26th Italian Sym-
posium on Advanced Database Systems (CEUR Workshop Proceedings,
Vol. 2161). CEUR-WS.org.

Michele Ruta, Floriano Scioscia, Saverio leva, Giovanna Capurso, and
Eugenio Di Sciascio. 2017. Semantic Blockchain to Improve Scalability
in the Internet of Things. Open Journal of Internet of Things 3 (2017),
46-61.

Fariba Sadri and Robert A. Kowalski. 1995. Variants of the Event
Calculus. In Logic Programming, Proceedings of the Twelfth International
Conference on Logic Programming, Tokyo, Japan, June 13-16, 1995, Leon
Sterling (Ed.). MIT Press, 67-81.

F. Schrans, D. Hails, A. Harkness, S. Drossopoulou, and S. Eisenbach.
2019. Flint for Safer Smart Contracts. https://arxiv.org/pdf/1904.06534.
pdf.

JR Searle. 1996. The construction of social reality. Penguin Books.
Pablo Lemela Seijas, Alexander Nemish, David Smith, and Simon
Thompson. 2020. Marlowe: implementing and analysing financial
contracts on blockchain. In Workshop on Trusted Smart Contracts (Fi-
nancial Cryptography 2020).

Sepehr Sharifi, Alireza Parvizimosaed, Daniel Amyot, Luigi Logrippo,
and John Mylopoulos. 2020. Symboleo: Towards a Specification Lan-
guage for Legal Contracts. In 28th IEEE Int. Requirements Engineering
Conf. (RE’20). IEEE.

OASIS Standard. 2013. eXtensible Access Control Markup Language
(XACML) Version 3.0. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-os-en.html.

Nick Szabo. 1997. Formalizing and Securing Relationships on Public
Networks. First Monday 2,9 (1997). https://doi.org/10.5210/fm.v2i9.548
T.M. van Engers and R. van Doesburg. 2015. At Your Service, On the
Definition of Services from Sources of Law. In Proceedings of the 15th
International Conference on Artificial Intelligence and Law (ICAIL 2015).
ACM, 221-0225. https://doi.org/10.1145/2746090.2746115


https://doi.org/10.1145/3086512.3086515
https://doi.org/10.1109/POLICY.2005.23
https://solidity.readthedocs.io
https://solidity.readthedocs.io
https://doi.org/10.1145/1062455.1062502
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1093/logcom/14.5.675
https://doi.org/10.1093/logcom/14.5.675
https://doi.org/10.1145/1380564.1380569
https://doi.org/10.1145/112646.112667
https://doi.org/10.1145/3295749
https://doi.org/10.1145/3295749
https://doi.org/10.1093/jigpal/4.3.427
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/3-540-45619-8_3
https://arxiv.org/pdf/1904.06534.pdf
https://arxiv.org/pdf/1904.06534.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.1145/2746090.2746115

GPCE, Generatic Programming: Concepts & Experiences, 2020 L. Thomas van Binsbergen, Lu-Chi Liu, Robert van Doesburg, and Tom van Engers

[32] Daniel Davis Wood. 2014. Ethereum: a secure decentralised generalised

[34] Mirko Zichichi, Michele Contu, Stefano Ferretti, and Victor Rodriguez-
transaction ledger.

Doncel. 2020. Ensuring Personal Data Anonymity in Data Market-

[33] Huan Zhou, Xue Ouyang, Jinshu Su, Cees de Laat, and Zhiming Zhao. places through Sensing-as-a-Service and Distributed Ledger. In Pro-
2019. Enforcing trustworthy cloud SLA with witnesses: A game theory- ceedings of the 3rd Distributed Ledger Technology Workshop Co-located
based model using smart contracts. Concurrency and Computation: with ITASEC (CEUR Workshop Proceedings, Vol. 2580), Franco Chiar-
Practice and Experience (2019), e5511. https://doi.org/10.1002/cpe.5511 aluce and Leonardo Mostarda (Eds.). CEUR-WS.org.


https://doi.org/10.1002/cpe.5511

	Abstract
	1 Motivation
	2 Legal foundations
	3 Language overview
	4 Implementation
	5 Case study: GDPR
	5.1 Concept definitions
	5.2 Consent
	5.3 The right to rectification
	5.4 Reflections

	6 Related work
	7 Conclusions
	References

