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with the (supposedly) near advent of autonomous artificial 

entities, or any other forms of distributed automatic 

decision making,

– humans less and less in the loop 

– increasing concerns about unintended consequences
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Unintended consequences:
bad or limited design

implementation fault 
(bugs) 

● Example: Heartbleed Bug with OpenSSL (CVE-2014-0160)

– weakness allows stealing the information protected, under normal conditions, by the SSL/TLS 

encryption used to secure the Internet. 

– bug was introduced in December 2011 and has been out in the wild since OpenSSL release 1.0.1 

on 14th of March 2012. OpenSSL 1.0.1g released on 7th of April 2014 fixes the bug.



Unintended consequences:
bad or limited design

● Wallet hacks, fraudulent actions and bugs in the in the 

blockchain sector during 2017: 

– CoinDash ICO Hack ($10 millions)

– Parity Wallet Breach ($105 millions)

– Enigma Project Scum

– Parity Wallet Freeze ($275 millions)

– Tether Token Hack ($30 millions)

– Bitcoin Gold Scam ($3 millions)

– NiceHash Market Breach ($80 millions)

Source: CoinDesk (2017), Hacks, Scams and Attacks: Blockchain's 2017 Disasters
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● Software used across the US 

predicting future crimes and 

criminals biased against African 

Americans (2016)

Angwin J. et al. ProPublica, May 23 (2016). Machine Bias: risk assessments in criminal sentencing 
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– Existing statistical bias (correct description)

– When used for prediction on an individual it 

is read as behavioural predisposition, i.e. 

it is interpreted as a mechanism.

– A biased judgment introduces here negative 

consequences in society. 
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DNA footwear
origin, gender, 
ethnicity, wealth, ... ...

improper

profiling?

Unintended consequences:
the “artificial prejudice”

improper

because it causes

unfair judgment

Norms determine which factors are acceptable or not.



● The “improvident” qualification to an inductive inference might 

be given already before taking into account the practical 

consequences of its acceptation.
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● Country A’s army demands a classifier to recognize whether a 

tanks is from country A or country B. It provides the developers 

with a series of photos of tanks from both countries. 

● After the training, the developers investigate by introspection 

the activation patterns. They discover that “daylight” is a major 

factor supporting a B-tank classification. Returning on the 

source data, the developers discovered that there was no 

photo of B-tanks at night. 

 statistical biases endanger ML predictive abilities

Unacceptable conclusions: 
improvident induction

 
2. an expert would reject the conclusion when no relevant 
mechanism can be imagined linking factor with conclusion.

 
1. move the focus from software engineering to data 
engineering
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Example: hired/applicants data

Unacceptable conclusions: 
improvident induction

mathematics dept. sociology dept.

university

1/1 vs 1/10 1/100 vs 0/1

2/101 vs 1/11

favours females favours females

favours males

● Problems may also arise for the statistical inference by itself, 

as shown e.g. by Simpson’s paradox

Pearl, J. (2014). Understanding Simpson’s Paradox. The American Statistician, 68(1), 8–13.
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Unacceptable conclusions: 
improvident induction

mathematics dept. sociology dept.

university

1/1 vs 1/10 1/100 vs 0/1

2/101 vs 1/11

favours females favours females

favours males

● Problems may also arise for the statistical inference by itself, 

as shown e.g. by Simpson’s paradox

Pearl, J. (2014). Understanding Simpson’s Paradox. The American Statistician, 68(1), 8–13.● Only causal mechanisms enable to select an interpretation.
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● Explainable AI has basically two drivers:

– reject unacceptable conclusions

– satisfy reasonable requirements of expertise

● But what qualifies a conclusion as “unacceptable”? And what 
might be used to define an expertise to be “reasonable”?

● claim: normware! 

i.e. computational artifacts specifying shared expectations 
(“norm” as in normality) 
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– of not taking “wrong” decisions, of performing “wrong” 
actions, wrong because having disastrous impact

● How to (attempt to) satisfy this requirement?
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– of not taking “wrong” decisions, of performing “wrong” 
actions, wrong because having disastrous impact

● How to (attempt to) satisfy this requirement?

● claim: normware! 

i.e. computational artifacts specifying shared drivers 
(“norm” as in normativity)



symbolic device

when running → 

symbolic mechanism

relies on physical 

mechanisms

software
physical device

when running → 

physical mechanism

situated in 

a physical environment

hardware normware

control structure control structure ……….

………..

………..
 

relies on symbolic 

mechanisms

A tentative taxonomy

?



symbolic device

when running → 

symbolic mechanism

relies on physical 

mechanisms

software
physical device

when running → 

physical mechanism

situated in 

a physical environment

hardware normware

control structure control structure ……….

………..

………..
 

relies on symbolic 

mechanisms

A tentative taxonomy

?

Is normware just a type of software?



symbolic device

when running → 

symbolic mechanism

relies on physical 

mechanisms

software
physical device

when running → 

physical mechanism

situated in 

a physical environment

hardware normware

control structure control structure ……….

………..

………..
 

relies on symbolic 

mechanisms

A tentative taxonomy

?

normative and 

epistemic

pluralism?

Is normware just a type of software?

interaction with

sub-symbolic

modules?
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Impact at large

general approach used in problem-solving, machine learning, ...

environmentuser
interaction

device

increasing 
reward

● Traditionally, engineering is about the conception of devices to 

implement certain functions. Functions are always defined within 

a certain operational context to satisfy certain needs.

● optimization is made possible by specifying a reward function 

associated to certain goals
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Impact at large

goal: fishing,

reward: proportional to 

quantity of fish, inversely 

to effort.

individual solution to 

optimization problem: 

“fishing with bombs”

     acknowledgement of undesirable second-order effects.

by whom? for whom?
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Planning with adaptations
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● In general, supervised machine learning involves:
– a data-flow computational network 
– parameters distributed along the network
– a ML method enabling adaptation of parameters 

against some feedback, e.g. output error in the training phase
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Supervised Machine Learning

planner

plan

executor

lower-level
diagnostic
feedback

intentional setup

higher-level
diagnostic
feedback?

● This seems the root of our problems with ML. Can we repair it?

adaptive
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● In evolutionary terms, we could consider a multitude of different 
non-adaptive black-boxes, covering several configurations of 
parameters, competing for computational resources. 
– For each learning step, the oracle sets the means to select the best performing 

black-box(es), for which access to computational resources for future predictions 
will be granted as a reward. [...]

● But who “pays” the oracle? 
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reward

● In evolutionary terms, we could consider a multitude of different 
non-adaptive black-boxes, covering several configurations of 
parameters, competing for computational resources.  
– For each learning step, the oracle sets the means to select the best performing 

black-box(es), for which access to computational resources for future predictions 
will be granted as a reward. [...]

● The higher-level diagnostic feedback implies that also the 
system drivers should pass from a selection mechanism.
 

non-adaptive



  

Evolutionary view

 

black box 2

black box 1

...

oracle 2

oracle 1

...

second-order
oracle?

reward



  

Evolutionary view

 

black box 2

black box 1

...

oracle 2

oracle 1

...

second-order
oracle?

reward

● Let’s use this architecture on a concrete example: IBM Watson 
(building upon a network of intelligent QA agents). 

– a question is given

– the system has to guess 

● what the question demands (~ oracles) 

● what is the answer (~ black-box), 

– correct response is given by the jury (~ second-order oracle)
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● Let’s use this architecture on a concrete example: IBM Watson 
(building upon a network of intelligent QA agents). 

– a question is given

– the system has to guess 

● what the question demands (~ oracles) 

● what is the answer (~ black-box), 

– correct response is given by the jury (~ second-order oracle)● Let’s apply it to our initial problems!



  

Example: neutrality constraint

training datablack box 2

black box 1

black box 3
a, b, c → class 1
a, b, d → class 2
a, c, e → class 1

neutrality 
w.r.t. d

pruned
training data

a, b, c → class 1
a, c, e → class 1

neutralized
training data

a, b, c → class 1
a, b, d → class 2
a, b, d → class 1
a, c, e → class 1
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Example: alignment to expert 
knowledge for explanation

“a → b. c.”

“a → b. a.”

“c → b. c.” explain b

justification 
tracer

a. c.

intentional 
setup

perceptual setup

align with 
expert 

a → b.

c → b.

explanation check

alignment
checking

explain b

explain b

explainers

a → b.



What normware consists of

● It has to be symbolic

– contains knowledge: epistemic commitments

if flower and seed then phanerogam
if phanerogam and bare-seed then fir
if phanerogam and 1-cotyledon then 
monocotyledonous
if phanerogam and 2-cotyledon then 
dicotyledonous
if monocotyledon and rhizome then thrush
if dicotyledon then anemone
if monocotyledon and ¬rhizome then lilac
if leaf and flower then cryptogamous
if cryptogamous and ¬root then foam
if cryptogamous and root then fern 
if ¬leaf and plant then thallophyte
if thallophyte and chlorophyll then algae
if thallophyte and ¬ chlorophyll then fungus
if ¬leaf and ¬flower and ¬plant then colibacille

expert systems

frames

semantic networks



What normware consists of

● It has to be symbolic

– contains knowledge: epistemic commitments

– contains drivers: behavioural commitments

deontic logics
(permission, obligation and prohibition)

hohfeldian prisms
types of obligations and powers
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CP-nets (Ceteri 
Paribus) 

GAI networks
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Machine learning

internalizing 
desired 
behaviour

Software development

hacking 
the brain

Normware-based computing

providing guidelines, interacting with experiences
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Perspectives
● This presentation highlighted the crucial role of normware with 

respect to trustworthy and explainable AI (→ computing) 

– ML approaches usually do not consider this level of abstraction

– ethical/responsible AI studies target higher level constraints

● It makes clear two perspectives on normware: 

– computational artifacts specifying norms

– ecology of components guiding the system components 

● The ecological perspective overlooked so far, but reminds of 

visionary ideas presented in the history of AI (Minsky’s society of 

minds, Brooks’ intelligent creatures). 

including sub-symbolic ones!

● Focus on incentive structures
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A less tentative taxonomy
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