Leendert van Duijn

Universiteit van Amsterdam - System and Network Engineering

Leendert.vanduijn@os3.nl

July 3, 2014
Beacons

What are they?
Reoccurring automated messages

What can they do?
Reveal your location, Leak data, Get Bots configured to do damage
What sends beacons?

- Malware polling for instructions
- Botnet membership maintenance
- Periodic service checks, Nagios
- Periodic updates, your favorite software
- Visual feedback from network services
Related work

- ProVeX, deep packet inspection of Malware traffic, Rossow and Dietrich
- Detecting P2P Malware traffic based on regional periodicity, Qiao et al.
- Jackstraws, executable code analysis using behavior graphs, Jacob et al.
- Using host level intrusion detection to detect advanced persistent threats, Liang et al.
Data sets

- Sinkholing, reducing Malware impact by redirecting it
- Multiple days of traffic dumps available
- Diverse hosts, protocols and realistic data
- Not truly the native behaviour
Research questions

- Can traffic dumps be used to detect beacons produced by Malware?
- Can detection performance be improved by early classification?
- Is it possible to differentiate Malware in the presence of legitimate beacons?

How can this be used in practice?
Detecting beacons

- Obtain a traffic dump with suspected beacon activity
- Separate packets into several classes of similar or related traffic
- Identify/prioritize suspect classes using prior knowledge or experience
- Look for local patterns within individual classes
- Export traffic per class to investigate with Wireshark
Focus on relevance
Capture anomalies
Adjustable
Classes

- Focus on relevance
- Capture anomalies
- Adjustable

- Clustering using K means
- Clustering by tree building
- Rule based, user configurable classes
Classifiers

- Source IP address
- TCP Destination port
- Source and destination IP, protocol, length, entropy
Patterns

- Localized
- Generic
- Performance
Patterns

- Localized
- Generic
- Performance

- Histogram, activity over time
- Frequency analysis
- Auto correlation
Sinkhole, what hosts are beaconing?

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Source IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets</td>
<td>2.4M over 2 days</td>
</tr>
<tr>
<td>Found classes</td>
<td>421</td>
</tr>
<tr>
<td>X axis</td>
<td>Auto correlation over 1 window</td>
</tr>
<tr>
<td>Y axis</td>
<td>Sliding window in time from top to bottom</td>
</tr>
<tr>
<td>Selection</td>
<td>From the top 10 in number of packets</td>
</tr>
</tbody>
</table>

Figure: Outgoing packets sinkhole, all protocols and destinations
Figure: TCP outgoing every 26 and 3 seconds respectively. Uniform traffic
Non Malware beacons

- Legitimate beacons can occur, what do they look like?
- Don’t websites autorefresh all the time?
- Does encryption hide beacons?

Figure: An hour of HTTPS traffic while writing and browsing
Non Malware beacons - HTTP, SSH

Figure: An hour of traffic, watching a movie, listing some files
Conclusion

- **Can traffic dumps be used to detect beacons produced by Malware?**
 It is possible to detect beacon traffic in packet dumps using auto correlation of the packet rate over time.

- **Can detection performance be improved by early classification?**
 Using classification or clustering can help in isolating streams/types of traffic, increasing the number of data sets to analyze in exchange for signal clarity.

- **Is it possible to detect Malware in the presence of legitimate beacons?**
 There are features which can be used to distinguish beacons from each other, packet rate, packet uniformity and presence in time.
Future work

- Define a scoring method for the Auto correlation waterfalls to automate potential hits
- Investigate parameter automation
- Go from audits to live analysis
- Investigate sparse data, methods of combining/splitting data with significant gaps.
- How does it handle noisy data, cloaked Malware and App traffic?
Questions?

